ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

От гидрофильности к гидрофобности поверхности. Варьирование смачиваемости материала на подложке за счет локального колебательного воздействия при межфазном синтезе материала

Код статьи
10.31857/S0044453723010107-1
DOI
10.31857/S0044453723010107
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 97 / Номер выпуска 1
Страницы
75-80
Аннотация
На примере системы водный раствор соли лантаноида – раствор ди-(2-этилгексил)фосфорная кислота в разбавителе (гептан, толуол, тетрахлорметан) показано, что локальное колебательное воздействие на межфазный слой в системе из двух несмешивающихся жидкостей во время межфазного синтеза может быть использовано для качественного изменения смачиваемости поверхности подложки, на которую перенесен материал межфазных образований, делая ее гидрофобной или гидрофильной за счет различного структурирования, подобно “эффекту листа лотоса”. Варьируя состав системы, условия проведения процесса, параметры внешнего силового поля можно получать материал с заданной величиной краевого угла (от 30 до 163°), улучшая потребительские качества его носителя.
Ключевые слова
гидрофобность Д2ЭГФК материал межфазный синтез смачиваемость структура самосборная элемент редкоземельный
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Lyubimov D.V., Lyubimova T.P., Tcherepanov A.A. et al. // Microgravity Science and Technology. 2005. V. 16. № 1. P. 290. https://doi.org/10.1007/BF029459932005
  2. 2. Ouriev B. // Rheologica Acta. 2007. V. 46. № 6. P. 785. https://doi.org/10.1007/s00397-006-0152-9
  3. 3. Ubbenjans B., Frank-Rotsch Ch., Virbulis J. et al. // Crystal Research and Technology. 2012. V. 47. № 3. P. 279. https://doi.org/10.1002_crat.201100413
  4. 4. Chirita G., Stefanescu I., Soares D., Silva F.S. // Materials & Design. 2009. V. 30. № 5. P. 1575. https://doi.org/10.1016/j.matdes.2008.07.045
  5. 5. Premvrat Kumar, Sandeep Katiyar // Intern. J. of Engineering Research and Technology. 2018. V. 7. № 6. P. 370.
  6. 6. Patel V.P., Patel J.V., Patel A.V., Bhuva B.V. // Intern. Research J. of Engineering and Technology. 2019. V. 6. № 12. P. 1047.
  7. 7. Wen Lai Huang, Kai Ming Liang, Shi Hua Cui, Shou Ren Gu // Materials Research Bulletin. 2001. V. 36. № 3–4. P. 461. https://doi.org/10.1016/S0025-5408 (01)00524-4
  8. 8. Alvarez A., Friend J., Yeo L.Y. // Langmuir. 2008. V. 24. P. 10629. https://doi.org/10.1021/la802255b
  9. 9. Руденко О.В., Коробов А.И., Коршак Б.А. и др.// Российские нанотехнологии. 2010. Т. 5. № 7–8. С. 63. Rudenko O.V., Korobov A.I., Korshak B.A. et al. // Nanotechnologies in Russia. 2010. V. 5. № 7–8. P. 469. https://doi.org/10.1134/S1995078010070062
  10. 10. Голубина Е.Н., Кизим Н.Ф. // Журн. физ. химии. 2021. Т. 95. № 4. С. 508. Golubina E.N., Kizim N.F. // Rus. J. of Phys. Chem. A. 2021. V. 95. № 4. Р. 659. https://doi.org/10.1134/S003602442104007510.1134/S0036024421040075.https://doi.org/10.31857/S0044453721040075
  11. 11. Duan H., Wang D., Kurth D.G., Mohwald H. // Angewandte Chemie International Edition. 2004. V. 43. P. 5639. https://doi.org/10.1002/anie.200460920
  12. 12. Mao Z., Guo J., Bai S. et al. // Angewandte Chemie International Edition. 2009. V. 48. № 27. P. 4953. https://doi.org/10.1002/anie.200901486
  13. 13. Lin Y., Skaff H., Emrick T. et al. // Science. 2003. V. 299. P. 226. https://doi.org/10.1126/science.1078616
  14. 14. McDowell W.J., Perdue P.T., Case G.N. // J. Inorg. and Nucl. Chem. 1976. V. 38. P. 2127.
  15. 15. Кизим Н.Ф., Голубина Е.Н. // Журн. физ. химии. 2018. Т. 92. № 3. С. 457. Kizim N.F., Golubina E.N. // Rus. J. of Phys. Chem. A. 2018. V. 92. № 3. Р. 565. https://doi.org/10.1134/S003602441803010X
  16. 16. Голубина Е.Н., Кизим Н.Ф., Чекмарев А.М. // Докл. АН. 2015. Т. 465. № 3. С. 320. Golubina E.N., Kizim N.F., Chekmarev A.M. // Doklady Physical Chemistry. 2015. V. 465. Part 1. Р. 283. https://doi.org/10.1134/S001250161511007X
  17. 17. Голубина Е.Н., Кизим Н.Ф., Чекмарев А.М. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1429. Kizim N.F., Golubina E.N., Chekmarev A.M. // Rus. J. of Phys. Chem. A. 2014. V. 88. № 9. Р. 1594. https://doi.org/10.1134/S0036024414090155
  18. 18. Кизим Н.Ф., Голубина Е.Н. // Хим. технология. 2009. Т. 10. № 5. С. 296.
  19. 19. Kizim N.F., Golubina E.N., Tarasov V.V. // Theoretical Foundations of Chemical Engineering. 2016. V. 50. № 4. P. 632. https://doi.org/10.1134/S0040579516040126
  20. 20. Golubina E.N., Kizim N.F., Sinyugina E.V., Chernyshev I.N. // Mendeleev Commun. 2018. V. 28. № 1. P. 110. https://doi.org/10.1016/j.mencom.2018.01.038
  21. 21. Чернышев И.Н., Сафронова Е.В., Голубина Е.Н., Кизим Н.Ф. // Успехи в химии и хим. технологии. 2017. Т. 31. № 13. С. 11.
  22. 22. Голубина Е.Н., Кизим Н.Ф., Чекмарев А.М. // Докл. АН. 2019. Т. 488. № 3. Р. 738. Golubina E.N., Kizim N.F., Chekmarev A.M. // Doklady Physical Chemistry. 2019. V. 488. Part 1. Р. 134. https://doi.org/10.1134/S0012501619090069
  23. 23. Голубина Е.Н., Кизим Н.Ф. // Хим. технология. 2010. Т. 11. № 7. С. 424.
  24. 24. Cassie A.B.D., Baxter S. // Trans. Faraday Soc. 1944. V. 40. P. 546.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека