RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Preparing Thin Gallium Sulphide Films via PECVD and Studying Their Properties

PII
10.31857/S0044453723010211-1
DOI
10.31857/S0044453723010211
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 1
Pages
148-154
Abstract
Thin films of GaSх are obtained via plasma-enhanced chemical vapor deposition (PECVD) for the first time, while high-purity volatile derivatives of the corresponding macrocomponents (gallium chloride (GaCl3) and hydrogen sulfide (H2S)) are used as the initial materials. It is found that the nonequilibrium low-temperature plasma of an HF discharge (40.68 MHz) at a reduced pressure (0.01 Torr) is the initiator of chemical transformations. Components of reactive plasma formed in the gas phase are studied via optical emission spectroscopy (OES). Structural and electrophysical properties of the obtained materials are studied as well.
Keywords
сульфид галлия тонкие пленки PECVD
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Basinski Z.S., Dove D.B., Mooser E. // Helv. Phys. Acta. 1961. V. 34. P. 373.
  2. 2. Zappia M.I., Bianca G., Bellani S. et al. // J. Phys. Chem. C. 2021. V. 125. № 22. P. 11857. https://doi.org/10.1021/acs.jpcc.1c03597
  3. 3. Jones A.C., O’Brien P. // CVD of   Compound Semiconductors: Precursor Synthesis, Development and Applications. 1997. Ch. 1. Basic Concepts. P. 1. https://doi.org/10.1002/9783527614639.ch1
  4. 4. Attolini G., Negri M., Besagni T. et al. // Mater. Sci. Eng. B. 2020. V. 261. P. 114623. https://doi.org/10.1016/j.mseb.2020.114623
  5. 5. Goodyear J., Steigmann G.A. // Acta Cryst. 1963. V. 16. P. 946. https://doi.org/10.1107/S0365110X63002565
  6. 6. Harvey A., Backes C., Gholamvand Z. et al. // Chem. Mater. 2015. V. 27. № 9. P. 3483. https://doi.org/10.1021/acs.chemmater.5b00910
  7. 7. Hu P., Wang L., Yoon M. et al. // Nano Lett. 2013. V. 13. № 4. P. 1649. https://doi.org/10.1021/nl400107k
  8. 8. Huang W., Gan L., Li H. et al. // CrystEngComm. 2016. V. 18. P. 3968. https://doi.org/10.1039/C5CE01986A
  9. 9. Moez A.A. // J. Mater Sci: Mater Electron. 2021. V. 32. P. 5668. https://doi.org/10.1007/s10854-021-05288-9
  10. 10. Chen X., Hou X., Cao X. et al. // J. Cryst. Growth. 1997. V. 173. № 1–2. P. 51. https://doi.org/10.1016/S0022-0248 (96)00808-1
  11. 11. Eriguchi K., Biaou C., Das S. et al. // AIP Advances. 2020. V. 10. № 10. P. 105215. https://doi.org/10.1063/5.0021938
  12. 12. Lu Y., Chen J., Chen T. et al. // Adv. Mater. 2020. V. 32. № 7. P. 1906958. https://doi.org/10.1002/adma.201906958
  13. 13. Meng X., Libera J.A., Fister T.T. et al. // Chem. Mater. 2014. V. 26. № 2. P. 1029. https://doi.org/10.1021/cm4031057
  14. 14. Rao P., Kumar S., Sahoo N.K. // Mater. Chem. Phys. 2015. V. 149–150. P. 164. https://doi.org/10.1016/j.matchemphys.2014.10.002
  15. 15. Ertap H., Baydar T., Yüksek M., Karabulut M. // Turk. J. Phys. 2016. V. 40. № 3. P. 297. https://doi.org/10.3906/fiz-1604-14
  16. 16. Micocci G., Rella R., Tepore A. // Thin Solid Films. 1989. V. 172. № 2. P. 179. https://doi.org/10.1016/0040-6090 (89)90647-0
  17. 17. Kuhs J., Hens Z., Detavernier C. // J. Vac. Sci. Technol. A. 2019. V. 37. № 2. P. 020915. https://doi.org/10.1116/1.5079553
  18. 18. Sanz C., Guillén C., Gutiérrez M.T. // J. Phys. D: Appl. Phys. 2009. V. 42. № 8. P. 085108. https://doi.org/10.1088/0022-3727/42/8/085108
  19. 19. Семенов В.Н., Лукин А.Н., Волков В.В., Остапенко О.В. // Весник ТГУ. 1999. Т. 4. Вып. 2. С. 234.
  20. 20. Zheng N., Bu X., Feng P. // J. Am. Chem. Soc. 2003. V. 125. № 5. P. 1138. https://doi.org/10.1021/ja021274k
  21. 21. Suh S., Hoffman D.M. // Chem. Mater. 2000. V. 12. № 9. P. 2794. https://doi.org/10.1021/cm0003424
  22. 22. Horley G.A., Lazell M.R., O’Brien P. // Chem. Vap. Depos. 1999. V. 5. № 5. P. 203. https://doi.org/10.1002/ (SICI)1521-3862(199910)5: 5%3C203::AID-CVDE203%3E3.0.CO;2-L
  23. 23. Meng X., Libera J.A., Fister T.T. et al. // Chem. Mater. 2014. V. 26. № 2. P. 1029. https://doi.org/10.1021/cm4031057
  24. 24. Mochalov L., Logunov A., Kitnis A., Vorotyntsev V. // Plasma Chem. Plasma Process. 2020. V. 40. № 1. P. 407. https://doi.org/10.1007/s11090-019-10035-4
  25. 25. Vorotyntsev V.M., Malyshev V.M., Mochalov L.A. et al. // Sep. Purif. Technol. 2018. V. 199. P. 214. https://doi.org/10.1016/j.seppur.2018.01.065
  26. 26. Mochalov L.A., Kornev R.A., Churbanov M.F., Sennikov P.G. // J. Fluor. Chem. 2016. V. 160. P. 48. https://doi.org/10.1016/j.jfluchem.2014.01.011
  27. 27. Mochalov L.A., Kudryashov M.A., Logunov A.A. et al. // Plasma Chem. Plasma Process. 2021. V. 41. № 6. P. 1661. https://doi.org/10.1007/s11090-021-10190-7
  28. 28. Mochalov L.A., Churbanov M.F., Velmuzhov A.P. et al. // Opt. Mater. 2015. V. 46. P. 310. https://doi.org/10.1016/j.optmat.2015.04.037
  29. 29. Mochalov L., Logunov A., Gogova D. et al. // Opt. Quantum Electron. 2020. V. 52. P. 510. https://doi.org/10.1007/s11082-020-02625-w
  30. 30. Mochalov L., Logunov A., Kudryashov M. et al. // Opt. Mater. Express. 2022. V. 12. № 4. P. 1741. https://doi.org/10.1364/OME.455345
  31. 31. Vesel A., Kovac J., Primc G. et al. // Materials. 2016. V. 9. № 2. P. 95. https://doi.org/10.3390/ma9020095
  32. 32. Zhang Q.‑Z., Wang W., Thille C., Bogaerts A. // Plasma Chem. Plasma Process. 2020. V. 40. № 5. P. 1163. https://doi.org/10.1007/s11090-020-10100-3
  33. 33. Shirai T., Reader J., Kramida A.E., Sugar J. // J. Phys. Chem. Ref. Data. 2007. V. 36. № 2. https://doi.org/10.1063/1.2207144
  34. 34. Thomas R.E., Burton R.L., Glumac N.G., Polzin K.A. // 30th International Electric Propulsion Conference. September 17–20, 2007. Florence, Italy.
  35. 35. Шахатов В.А., Лебедев Ю.А., Lacoste A., Bechu S. // ТВТ. 2016. Т. 54. Вып. 4. С. 491 https://doi.org/10.7868/S0040364416040219
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library