- PII
- 10.31857/S0044453723010284-1
- DOI
- 10.31857/S0044453723010284
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 1
- Pages
- 166-174
- Abstract
- Casting from a solution is used to obtain proton-conducting membranes based on a poly(vinylidenefluoride-co-hexafluoropropylene) copolymer doped with diethylammonium hydrogen sulfate and diethylammonium mesylate with different levels of doping. An IR spectroscopic study is performed, and the phase behavior of the obtained membranes, their thermal and electrochemical stability, and specific electrical conductivity are investigated. It is established that doping protic ionic liquids into PVdF-HFP copolymer reduces the degree of its crystallinity. It has been shown that all membranes are thermally stable up to 290–300°C, and their conductivity at 145°C varies from 1.6 to 10.4 mS cm–1, depending on the level of doping.
- Keywords
- протонпроводящие мембраны термические характеристики электропроводность ИК-спектроскопия
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Nakamoto H., Watanabe M. // Chem. Commun. 2007. P. 2539. https://doi.org/10.1039/ B618953A
- 2. Tang B., Gondosiswanto R., Hibbert D.B., Zhao C. // Electrochim. Acta 2019. V. 298. P. 413. https://doi.org/. electacta.2018.12.100
- 3. Anouti M., Caillon-Caravanier M., Dridi Y. et al. // J. Phys. Chem. B 2008. V. 112. P. 13335. https://doi.org/10.1021/jp805992b
- 4. Nair M.G., Mohapatra S.R. // Mater. Lett. 2019. V. 251. P. 148. https://doi.org/10.1016/j.matlet.2019.05.026
- 5. Fernicola A., Panero S., Scrosati B. et al. // ChemPhysChem 2007. V. 8. P. 1103. https://doi.org/10.1002/cphc.200600782
- 6. Wippermann K., Wackerl J., Lehnert W. et al. // J. Electrochem. Soc. 2015. V. 163. P. F25.https://doi.org/10.1149/2.0141602jes
- 7. Lalia B.S., Yamada K., Hundal M.S. et al. // Appl. Phys. A 2009. V. 96. P. 661. https://doi.org/10.1007/s00339-009-5129-y
- 8. Lee S.Y., Yasuda T., Watanabe M. // J. Power Sources 2010. V. 195. P. 5909. https://doi.org/10.1016/j.jpowsour.2009.11.045
- 9. Nair M.G., Mohapatra S.R., Garda M.-R. et al. // Mater. Res. Express 2020. V. 7. P. 064005. https://doi.org/10.1088/2053-1591/ab9665
- 10. Natha A.K., Talukdar R. // Int. J. Polym. Anal. Charact. 2020. V. 25. P. 597. https://doi.org/10.1080/1023666X.2020.1823732
- 11. Cao Y., Tan Y.J., Li S. et al. // Nat. Electron 2019. V. 2. P. 75. https://doi.org/10.1038/s41928-019-0206-5
- 12. Elwan H.A., Mamlouk M., Scott K. // J. Power Sources 2021. V. 484. P. 229197. https://doi.org/10.1016/j.jpowsour.2020.229197
- 13. Siyahjani S., Oner S., Diker H. et al. // J. Power Sources 2020. V. 467. P. 228353. https://doi.org/10.1016/j.jpowsour.2020.228353
- 14. Cao J.-H., Zhu B.-K., Xu Y.-Y. // J. Membr. Sci. 2006. V. 281. P. 446. https://doi.org/10.1016/j.memsci.2006.04.013
- 15. Kumar S., Singh P.K., Agarwal D. et al. // Phys. Status Solidi A 2022. V. 219. P. 2100711. https://doi.org/10.1002/pssa.202100711
- 16. Schauer J., Sikora A., Pliskova M. et al. // J. Membr. Sci. 2011. V. 367. P. 332. https://doi.org/10.1016/j.memsci.2010.11.018
- 17. Singha M., Missan H.P.S. // ECS Trans. 2012. V. 50. P. 1199. https://doi.org/10.1149/05002.1199ecst
- 18. Fernicola A., Panero S., Scrosati B. // J. Power Sources. 2008. V. 178. P. 591. https://doi.org/10.1016/j.jpowsour.2007.08.079
- 19. Фадеева Ю.А., Кузьмин С.М., Шмуклер Л.Э., Сафонова Л.П. // Изв. АН. Сер. хим. 2021. № 1. С. 56. https://doi.org/10.1007/s11172-021-3056-z
- 20. Malis J., Mazur P., Schauer J. et al. // Int. J. Hydrogen Energy 2013. V. 38. P. 4697. https://doi.org/10.1016/j.ijhydene.2013.01.126
- 21. Terasawa N., Asaka K. // Mater. Today: Proc. 2020. V. 20. P. 265. https://doi.org/10.1016/j.matpr.2019.10.044
- 22. Sharma S., Pathak D., Dhiman N., Kumar R. // Surf. Innovations 2017. V. 5. P. 251. https://doi.org/10.1680/jsuin.17.00019
- 23. Shmukler L.E., Glushenkova E.V., Fadeeva Yu.A. et al. // J. Mol. Liq. 2019. V. 283. P. 338. https://doi.org/10.1016/j.molliq.2019.03.093
- 24. Sharma S., Dhiman N., Pathak D., Kumar R. // Ionics 2016. V. 22. P. 1865. https://doi.org/10.1007/s11581-016-1721-2
- 25. Xiang J., Chen R., Wu F. et al. // Electrochim. Acta 2011. V. 56. P. 7503. https://doi.org/10.1016/j.electacta.2011.06.103
- 26. Шмуклер Л.Э., Федорова И.В., Груздев М.С. и др. // Изв. АН. Сер. хим. 2019. № 11. С. 2009. https://doi.org/10.1007/s11172-019-2660-7
- 27. Cao Y., Mu T. // Ind. Eng. Chem. Res. 2014. V. 53. P. 8651. https://doi.org/10.1021/ie5009597
- 28. Singh S.V.K., Singh R.K. // J. Mater. Chem. C 2015. V. 3. P. 7305. https://doi.org/10.1039/C5TC00940E
- 29. Dzulkipli M.Z., Karim J., Ahmad A. et al. // Polymers 2021. V. 13. P. 1277. https://doi.org/10.3390/polym13081277
- 30. Mishra R., Singh S.K., Gupta H. et al. // Energy Fuels 2021. V. 35. P. 15153. https://doi.org/10.1021/acs.energyfuels.1c02114
- 31. Polat K. // Appl. Phys. A: Mater. Sci. Process. 2020. V. 126. P. 497. https://doi.org/10.1007/s00339-020-03698-w
- 32. Pandey G.P., Hashmi S.A. // J. Power Sources 2009. V. 187. P. 627. https://doi.org/10.1016/j.jpowsour.2008.10.112
- 33. Ribeiro M.C.C. // J. Mol. Liq. 2020. V. 310. P. 113178. https://doi.org/10.1016/j.molliq.2020.113178
- 34. Franguelli F.P., Barta-Holló B., Petruševski V.M. et al. // J. Therm. Anal. Calorim. 2021. V. 145. P. 2907. https://doi.org/10.1007/s10973-020-09991-3
- 35. Cai X., Lei T., Sun D., Lin L. // RSC Adv. 2017. V. 7. P. 15382. https://doi.org/10.1039/C7RA01267E
- 36. Aravindan V., Vickraman P., Kumar T.P. // J. Non-Cryst. Solids 2008. V. 354. P. 3451. https://doi.org/10.1016/j.jnoncrysol.2008.03.009
- 37. McGrath L.M., Jones J., Carey E., Rohan J.F. // ChemistryOpen 2019. V. 8. P. 1429. https://doi.org/10.1002/open.201900313
- 38. Heacock R.A., Marion L. // Can. J. Chem. 1956. P. 1782. https://doi.org/10.1139/v56-231
- 39. Zhong L., Parker S.F. // Roy. Soc. Open Sci. 2018. V. 5. P. 181363. https://doi.org/10.1098/rsos.181363
- 40. Майоров В.Д., Волошенко Г.И., Либрович Н.Б. // Хим. физика. 2011. Т. 30. № 4. С. 43. https://doi.org/10.1134/S1990793111020357
- 41. Ribeiro M.C.C. // J. Phys. Chem. B 2012. V. 116. P. 7281. https://doi.org/10.1021/jp302091d
- 42. Sim L.N., Majid S.R., Arof A.K. // Vib. Spectrosc. 2012. V. 58. P. 57. https://doi.org/10.1016/j.vibspec.2011.11.005