RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Structural Mechanisms of Phase Transitions of Water Ices II, IV, and V to Metastable Ice Ic at Atmospheric Pressure

PII
10.31857/S0044453723010399-1
DOI
10.31857/S0044453723010399
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 1
Pages
13-20
Abstract
Model structural mechanisms of transitions between crystalline water ices II → Ic, IV → Ic, and V → Ic are proposed. It is established that in the proposed II → Ic transition mechanism, one of the three systems of infinite parallel chains consisting of adjacent hexacycles and running along the 〈0001〉 direction of ice II is preserved, and these chains become parallel to one of the 〈211〉 directions of ice Ic. The proposed mechanism of the V → Ic transition preserves both systems of infinite parallel chains of adjacent hexacycles extended along the [101] and [10–1] directions of ice V; in ice Ic, they run along two directions 〈211〉 parallel to the same {120} plane. According to the proposed mechanism of the IV → Ic transition, puckered surfaces of hexacycles are retained. In all three cases, 3/4 of all hydrogen bonds are retained during the transition, and 1/4 of the bonds are rearranged. It is shown that the structures of ices II, IV, and V consist of the same structural element, which is slightly modified in ice V.
Keywords
кристаллические водные льды II IV и V фазовые переходы структурный механизм
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Памяти Н.А. Бульенкова // Журн. физ. химии. 2022. Т. 96. № 6. С. 917.
  2. 2. Бульенков Н.А. // Биофизика. 1991. Т. 36. № 2. С. 181.
  3. 3. Бульенков Н.А. // Там же. 2005. Т. 50. № 5. С. 934.
  4. 4. Бульенков Н.А. // Кристаллография. 2011. Т. 56. № 4. С. 729.
  5. 5. Bulienkov N.A., Zheligovskaya E.A. // Struct. Chem. 2017. V. 28. № 1. P. 75. https://doi.org/10.1007/s11224-016-0837-3
  6. 6. Zheligovskaya E.A., Bulienkov N.A. // Physics of Wave Phenomena. 2021. V. 29. No. 2. P. 141. https://doi.org/10.3103/S1541308X21020163
  7. 7. Бульенков Н.А. // Докл. АН СССР. 1985. Т. 284. № 6. С. 1392. (Физическая химия)
  8. 8. Желиговская Е.А., Бульенков Н.А. // Кристаллография. 2008. Т. 53. № 6. С. 1126.
  9. 9. Желиговская Е.А., Маленков Г.Г. // Успехи химии. 2006. Т. 75. № 1. С. 64.
  10. 10. del Rosso L., Celli M., Grazzi F. et al. // Nature Materials. 2020. V. 19. P. 663. https://doi.org/10.1038/s41563-020-0606-y
  11. 11. Salzmann C.G. // J. Chem. Phys. 2019. V. 150. P. 060901 (1–10). https://doi.org/10.1063/1.5085163
  12. 12. Komatsu K., Machida S., Noritake F. et al. // Nature Communications. 2020. V. 11. P. 464 (1–5). https://doi.org/10.1038/s41467-020-14346-5
  13. 13. Желиговская Е.А. // Кристаллография. 2015. Т. 60. № 5. С. 779.
  14. 14. Kamb B. // Sci. 1965. V. 150. P. 205. https://doi.org/10.1126/science.150.3693.205
  15. 15. Kamb B. // Acta Cryst. 1964. V. 17. P. 1437. https://doi.org/10.1107/S0365110X64003553
  16. 16. Engelhardt H., Kamb B. // J. Chem. Phys. 1981. V. 75. P. 5887. https://doi.org/10.1063/1.442040
  17. 17. Kamb B., Prakash A., Knobler C. // Acta Cryst. 1967. V. 22. P. 706. https://doi.org/10.1107/S0365110X67001409
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library