- PII
- 10.31857/S004445372302022X-1
- DOI
- 10.31857/S004445372302022X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 2
- Pages
- 252-257
- Abstract
- An expression is obtained for an effective geometric potential based on a coordinate system for a nanoribbon twisted in the form of a helicoid. The effective geometric potential for a Schrödinger equation is used to study a graphene nanoribbon of finite length with “armchair” edges under the action of an external electric field parallel to them. Solutions are calculated for the energy levels and wave functions of electrons in the vicinity of the Dirac point. It is shown there is only one state in the transverse direction.
- Keywords
- геометрический потенциал скрученные наноленты уравнение Вейнгартена модель kp-типа
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Jensen H., Koppe H. // Ann. Phys. 1971. V. 63. № 2. P. 586. https://doi.org/10.1016/0003-4916 (71)90031-5
- 2. Costa R.C.T. // Phys. Rev. A. 1981. V. 23. № 4. P. 1982. https://doi.org/10.1103/PhysRevA.23.1982
- 3. Cantele G., Ninno D., Iadonisi G. // Phys. Rev. B. 2000. V. 61. P. 3730. https://doi.org/10.1103/PhysRevB.61.13730
- 4. Aoki H., Koshino M., Takeda D. et al. // Ibid. 2001. V. 65. P. 035102. https://doi.org/10.1103/PhysRevB.65.035102
- 5. Encinosa M., Mott L. // Phys. Rev. A. 2003. V. 68. P. 014102. https://doi.org/10.1103/PhysRevA.68.014102
- 6. Gravesen J., Willatzen M. // Ibid. 2005. V. 72. P. 032108. https://doi.org/10.1103/PhysRevA.72.032108
- 7. Marchi A., Reggiani S., Rudan M., Bertoni A. // Phys. Rev. B. 2005. V. 72. P. 035403. https://doi.org/10.1103/PhysRevB.72.035403
- 8. Ведерников А.И., Чаплик А.В. // ЖЭТФ. 2000. Т. 117. № 2. С. 449. http://www.jetp.ac.ru/cgi-bin/r/index/r/117/2/p449?a=list.
- 9. Ortix C., van den Brink J. // Phys. Rev. B. 2010. V. 81. P. 165419. https://doi.org/10.1103/PhysRevB.81.165419
- 10. Садыков Н.Р., Юдина Н.В. // Журн. технич. физики. 2020. Т. 90. Вып. 3. С. 387. https://doi.org/10.21883/JTF.2020.03.48921.62-19
- 11. Atanasov V., Saxena A. // Phys. Rev.B. 2015. B. V. 92. P. 035440. https://doi.org/journals.aps.org/prb/abstract/10.1103/ PhysRevB.92.035440.
- 12. Mohanty N., Moore D., Xu Z. et al. // Nat. Commun. 2012. V. 3. P. 844. https://doi.org/10.1038/ncomms1834
- 13. Dandoloff R., Truong T.T. // Phys. Lett. A. 2004. V. 325. P. 233. https://doi.org/10.1016/j.physleta.2004.03.050
- 14. Atanasov V., Dandoloff R., Saxena A. // Phys. Rev. B. 2009. V. 79. P. 033404. https://doi.org/10.1103/PhysRevB.79.033404
- 15. Burgess M., Jensen B. // Phys. Rev. A. 1993. V. 48. P. 1861. https://doi.org/10.1103/PhysRevA.48.1861
- 16. Atanasov V., Saxena A. // Phys. Rev. B. 2010. V. 81. P. 205409. https://doi.org/10.1103/PhysRevB.81.205409
- 17. Joglekar Y.N. and Saxena A. // Ibid. 2009. V. 80. P. 153405-4. https://doi.org/10.1103/PhysRevB.80.153405
- 18. Atanasov V., Saxena A.// J. Phys. Condens. Matter. 2011. V. 23. P. 175301.
- 19. Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502 .
- 20. Yang S.H., Naaman R., Paltiel Y., Parkin S.S.P. // Nat. Rev. Phys. 2021. V. 3. P. 328.
- 21. Michaeli K., Kantor-Uriel N., Naamanm R., and Waldeck D.H.// Chem. Soc. Rev. 2016. V. 45. P. 6478
- 22. Naaman R. and Waldeck D.H.// Annu. Rev. Phys. Chem. 2015. V. 66. P. 263.
- 23. D’yachkova P.N. and D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.008690
- 24. Kiricsi I., Fudala A., Konya et al. // Appl. Catal. 2000. A. 203. L. 1.
- 25. De Crescenzi M., Castrucci P., Scarselli M. et al. // Appl. Phys. Lett. 2005. V. 86. P. 231901.
- 26. Morata A., Pacios M., Gadea G. et al. // Nat. Commun. 2018. V. 9. P. 4759.
- 27. Wu H., Chan G., and Choi J.W. // Nat. Nanotechnol. 2012. V. 7. P. 310.
- 28. Chan C.K., Peng H., Liu G. et al. // Ibid. 2008. V. 3. P. 31.
- 29. Sadykov N.R., Muratov E.T., Pilipenko I.A., Aporoski A.V. // Physica E: Low-dimensional Systems and Nanostructures. 2020. V. 120. P. 114071. https://doi.org/10.1016/j.physe.2020.114071
- 30. Dubrovin B.A., Novikov S.P., and Fomenko A.T. // Modern Geometry: Methods and Applications, 2nd ed. M.: Fizmatlit, 1986.
- 31. Spivak M. A Comprehensive Introduction to Differential Geometry Publish or Perish, Boston, 1999.
- 32. Sadykov N.R. Quantum Electronics. 1996. V. 26 (3). P. 271. http://iopscience.iop.org/1063-7818/26/3/A24.
- 33. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. 4-е изд., испр. М.: ФИЗМАТЛИТ, 2004. 688 с. ISBN 5-9221-0311-3.
- 34. Onipko A. and Malysheva L. // Phys. Status Solidi. 2017. V. 255. P. 1700248. https://doi.org/10.1002/pssb.201700248
- 35. Boyd R.W. Nonlinear Optics. Academic Press, San Diego (2003).
- 36. Landau L.D., Lifshitz E.M. Course of Theoretical Physics. V. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Oxford Univ. Press, Oxford, 1980) M.: Nauka, 1989.
- 37. Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. М.: Физматлит, 1978.
- 38. Садыков Н.Р. // Теоретическая и математическая физика. 2014. Вып. 180. № 3. С. 368. https://doi.org/10.4213/tmf8642