RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Stability Constants of Nickel(II) Complexes with [2.2.2]Cryptand in Aqueous Ethanol Solutions

PII
10.31857/S0044453723040155-1
DOI
10.31857/S0044453723040155
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 4
Pages
505-511
Abstract
The stability constants of nickel(II) complexes with [2.2.2]cryptand in aqueous ethanol solutions with a variable concentration of the organic co-solvent were determined by potentiometry at Т = 298 K and µ → 0. It was found that mononuclear, binuclear, and protonated nickel(II) cryptates can form in solution, whose stability increases with the ethanol content. The Gibbs energies of nickel(II) ion transfer from water to the aqueous ethanol solvent were calculated using published data. The contributions of resolvation of reagents in water–ethanol mixtures to the change in the stability of nickel(II) complexes with [2.2.2]cryptand were evaluated.
Keywords
криптанд[2.2.2] ион никеля(II) комплексообразование константа устойчивости водно-этанольный растворитель
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Dilber G., Kantekin H., Basaran D. et al. // Pak. J. Anal. Environ. Chem. 2014. V. 15. № 2. P. 20.
  2. 2. Salman A.D., Juzsakova T., Jalhoom M.G. et al. // J. Sustainable Metallurgy. 2022. V. 8. https://doi.org/10.1007/s40831-021-00484-7
  3. 3. Taurozzi J.S., Redko M.Y., Manes K.M. et al. // Separat. Purificat. Technol. 2013. V. 116. P. 415. https://doi.org/10.1016/j.seppur.2013.06.005
  4. 4. Amendola A., Bergamaschi G., Boiocchi M. et al. // Chem. Sci. 2014. V. 5. P. 1820. https://doi.org/10.1039/c3sc53504e
  5. 5. Ekanger L.A., Polin L.A., Shen Y. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 48. P. 14398. https://doi.org/10.1002/anie.201507227
  6. 6. Bailey M.D., Jin G-X., Carniato F. et al. // Chem. A Europ. J. 2021. V. 27. № 9. P. 3114. https://doi.org/10.1002/chem.202004450
  7. 7. Leone L., Guarnieri L., Martinelli J. et al. // Chem. A Europ. J. 2021. V. 27. № 46. P. P. 11811. https://doi.org/10.1002/chem.202101701
  8. 8. Kuntzsch M., Lamparter D., Bruggener N. et al. // Pharmaceutic. 2014. V. 7. P. 621. https://doi.org/10.3390/ph7050621
  9. 9. Blevins D.W., Rigney G.H., Fang M.Y. et al. // Nucl. Medic. Biolog. 2019. V. 74–75. P. 41. https://doi.org/10.1016/j.nucmedbio.2019.07.008
  10. 10. Mauthner G., Scherf U., Emil J.W., List E.J.W. // Appl. Phys. Lett. 2007. V. 91. P. 133501. https://doi.org/10.1063/1.2773756
  11. 11. Zejli H., Hidalgo-Hidalgo de Cisneros J.L., Naranjo-Rodriguez I. et al. // Anal. Lett. 2007. V. 40. № 14. P. 2788. https://doi.org/10.1080/00032710701577906
  12. 12. Woodruff A., Pohl C.A., Bordunov A., Avdalovic N. // J. Chromatogr. A 2003. V. 997. № 1–2. P. 33. https://doi.org/10.1016/s0021-9673 (03)00550-8
  13. 13. Vanatta L.E., Woodruff A., Coleman D.E. // J. Chromatogr. A 2005. V. 1085. № 1. P. 33. https://doi.org/10.1016/j.chroma.2005.01.048
  14. 14. Wang F., Zhang J., Ding X. et al. // Angew. Chem. Int. Ed. 2010. V. 49. P. 1090. https://doi.org/10.1002/anie.200906389
  15. 15. Wang Q., Cheng M., Tian L. et al. // Polym. Chem. 2017. V. 8. P. 6058. https://doi.org/10.1039/c7py01096f
  16. 16. Lenora C.U., Staples R.J., Allen M.J. // Inorg. Chem. 2020. V. 59. № 1. P. 86. https://doi.org/10.1021/acs.inorgchem.8b03605
  17. 17. Trautnitz M.F.K., Haas T., Schubert H., Seitz M. // Chem. Commun. 2020. V. 56. P. 9874. https://doi.org/10.1039/d0cc04050a
  18. 18. Gholiee Y., Salehzadeh S. // J. Mol. Liquid. 2020. V. 309. P. 113149. https://doi.org/10.1016/j.molliq.2020.113149
  19. 19. Vashistha V.K., Kumar A. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 834. https://doi.org/10.1134/s0036023621060218
  20. 20. Bondarev N.V. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 409. https://doi.org/10.1134/S1070363221030117
  21. 21. Исаева В.А., Шарнин В.А. // Журн. физ. химии. 2018. Т. 92. № 4. С. 600. https://doi.org/10.7868/S0044453718040131
  22. 22. Исаева В.А., Гамов Г.А., Шарнин В.А. // Журн. физ. химии. 2022. Т. 96. № 5. С. 687. https://doi.org/10.31857/S0044453722050132
  23. 23. Исаева В.А., Гамов Г.А., Шарнин В.А. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1577. https://doi.org/10.31857/S0044457X2111009X
  24. 24. Исаева В.А., Кипятков К.А., Гамов Г.А., Шарнин В.А. // Журн. физ. химии. 2021. Т. 95. № 5. С. 758. https://doi.org/10.31857/S0044453721050162
  25. 25. Бургер К. Сольватация, ионные реакции и комплексообразование в неводных средах. М.: Мир, 1984. – 256 с.
  26. 26. Arnaud-Neu F., Spiess B., Schwing-Weill M. J. // J. Am. Chem. Soc. 1982. V. 104. № 21. P. 5641. https://doi.org/10.1021/ja00385a014
  27. 27. Spiess B., Arnaud-Neu F., Schwing-Weill M.J. // Helv. Chim. Acta. 1979. V. 62. № 5. P. 1531. https://doi.org/10.1002/hlca.19790620518
  28. 28. Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
  29. 29. Woollej E.H., Hurkot D.G., Herber L.G. // J. Phys. Chem. 1970. V. 74. № 22. P. 3908. https://doi.org/10.1021/j100716a011
  30. 30. Buschmann H-J., Cleve E., Schollmeyer E. // J. Coord. Chem. 1997. V. 42. P. 127. https://doi.org/10.1080/00958979708045285
  31. 31. Amaud-Neu F., Spiess B., Schwing-Weill M. J. // Helv. Chim. Acta. 1977. V. 60. № 8. P. 2633. https://doi.org/10.1002/hlca.19770600815
  32. 32. Невский А.В., Шорманов В.А., Крестов Г.А. // Коорд. химия. 1989. Т. 5. № 11. С. 1576.
  33. 33. Михеев С.В., Фадеев Ю.Ю., Шарнин В.А., Шорманов В.А. // Журн. неорган. химии. 1994. Т. 39. № 9. С. 1502.
  34. 34. Невский А.В., Шорманов В.А., Крестов Г.А. // Коорд. химия. 1983. Т. 9. № 3. С. 391.
  35. 35. Шарнин В.А. // Журн. общ. химии. 1999. Т. 69. № 9. С. 1421.
  36. 36. Chanton M.K., Kolthoff I.M. // J. Solut. Shem. 1985. V. 14. № 1. P. 1. https://link.springer.com/article/10.1007/ BF00646725
  37. 37. Cox B.G., Garsia-Rosas J., Schneider H. // J. Am. Chem. Soc. 1981. V. 103. № 6. P. 1384. https://doi.org/10.1021/ja00396a016
  38. 38. Kalidas C., Hefter G., Marcus Y. // Chem. Rev. 2000. V. 100. № 3. P. 819. https://doi.org/10.1021/cr980144k
  39. 39. Чанкина Т.И., Парфенюк Т.И. // Изв. вузов. Химия и хим. технолог. 2009. Т. 52. № 5. С. 21.
  40. 40. Blandamer M.J., Briggs B., Burgess J. et al. // J. Chem. Soc. Farad. Trans. 1. 1988. V. 84. № 8. P. 2703. https://doi.org/10.1039/F19888402703
  41. 41. De Ligny C.L., Bax D., Alfenaar M., Elferink M.G.L. // Recl. Trav. Chim. Pays Bas. 1969. V. 88. № 10. P. 1183. https://doi.org/10.1002/recl.19690881005
  42. 42. Marcus Y. // Chem. Rev. 2007. V. 107. № 9. P. 3880. https://doi.org/10.1021/cr068045r
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library