RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Effect of Halogen at the Divalent Sulfur Atom on the Properties of Complexes with a Chalcogen and Hydrogen Bond

PII
10.31857/S0044453723050114-1
DOI
10.31857/S0044453723050114
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 5
Pages
702-711
Abstract
Binary complexes with a chalcogen (A complexes) and hydrogen (B complexes) bond formed by SHX molecules (X = F, Cl, Br, OH) of divalent sulfur and a water molecule have been calculated by the MP2/aug-cc-pVTZ quantum chemical method. An NBO analysis was performed for complexes of both types along with the topological analysis of electron density and decomposition of the binding energy into components. The quantum chemical calculations showed that the binding energies, interorbital interaction energies of monomers, and electron densities at the critical point (3, –1) of intermolecular contact are close in the A and B complexes. The main contribution to stabilization of the complexes is made by the electrostatic interaction; in the B complexes, however, the contribution of the charge transfer component is also significant. The dispersion energy plays a significant role in the binding of monomers in complexes of both types. According to the calculations, the interconversion of A and B complexes occurs with a very low activation barrier.
Keywords
нековалентные взаимодействия халькогенная и водородная связь структура переходного состояния MP2/aug-cc-pVTZ -расчеты
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Kollman P. // J. Am. Chem. Soc. 1977. V. 99. P. 4875.
  2. 2. Clark T., Hennemann M., Murray J.S., Politzer P. // J. Mol. Model. 2007. V. 1. P. 291.
  3. 3. Auffinger P., Hays F.A., Westhof E., Ho P.S. // Proc. Natl. Acad. Sci. USA 2004. V. 101. P. 16789.
  4. 4. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A 2009. V. 113. P. 8132.
  5. 5. Murray J.S., Lane P., Politzer P. // Int. J. Quantum Chem. 2007. V. 107. P. 2286.
  6. 6. Murray J.S., Lane P., Politzer P. // J. Mol. Model. 2009. V. 15. P. 723.
  7. 7. Murray J.S., Lane P., Clark T. et al. // Ibid. 2012. V. 18. P. 541.
  8. 8. Wheeler S.E., Houk K.N. // J. Chem. Theory Comput. 2009. V. 5. P. 2301.
  9. 9. Riley K.E., Hobza P. // J. Chem. Theory Comput. 2008. V. 4. P. 232.
  10. 10. Riley K.E., Murray J.S., Politzer P. et al. // J. Chem. Theory Comput. 2009. V. 5. P. 155.
  11. 11. Riley K.E., Hobza P. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 17742.
  12. 12. Deepa P., Pandiyan B.V., Kolandaivel P., Hobza P. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 2038.
  13. 13. Rosokha S.V., Stern C.L., Ritzert J.T. // Chem. – Eur. J. 2013. V. 19. P. 8774.
  14. 14. Rosokha S.V., Vinakos M.K. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 1809.
  15. 15. Wolters L.P., Bickelhaupt F.M. // Chemistry Open 2012. V. 1. P. 96.
  16. 16. Zhang X.Y., Zeng Y.L., Li X.Y. et al. // Struct. Chem. 2011. V. 22. P. 567.
  17. 17. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
  18. 18. Quiñonero D., Estarellas C., Frontera A., Deyà P.M. // Chem. Phys. Lett. 2011. V. 508. P. 144.
  19. 19. Moller C., Plesset M.S. // Phys. Rev. 1934. V. 46. P. 618.
  20. 20. Kendall R.A., Dunning T.H. Jr., Harrison R.J. // J. Chem. Phys. 1992. V. 96. P. 6796.
  21. 21. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. P. 553.
  22. 22. Reed A.E., Weinhold F., Curtiss L.A., Pochatko D.J. // J. Chem. Phys. 1986. V. 84. P. 5687.
  23. 23. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88. P. 899.
  24. 24. Ditchfield R. // Mol. Phys. 1974, V. 27. P. 789.
  25. 25. Wolinski K., Hilton J.F., Pulay P. // J. Am. Chem. Soc. 1990. V. 112. P. 8251.
  26. 26. Lu T., Chen F. // J. Comp. Chem. 2012. V. 33. P. 580.
  27. 27. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
  28. 28. Bader R.F.W. Atoms in molecules, a quantum theory. Oxford: Clarendon Press. 1993.
  29. 29. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. P. 1347.
  30. 30. Gordon M.S., Schmidt M.W. // Theory and Applications of Computational Chemistry: the first forty years. Eds. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria . Asterdam: Elsevier, 2005. 1167 p.
  31. 31. Nepal B., Scheiner S. // Chemical Physics 2015. V. 456. P. 34.
  32. 32. Mó O., Yánez M., Elguero J. // J. Mol. Struct. (Theochem) 1994. V. 314. P. 73.
  33. 33. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. P. 170.
  34. 34. Popelier P.L.A. // J. Phys. Chem. A 1998. V. 102. P. 1873.
  35. 35. Cremer D., Kraka E. // Angew. Chem., Int. Ed. Engl. 1984. V. 23. P. 627.
  36. 36. Isaev A.N. // Comput. Theoret. Chem. 2017. V. 1117. P. 141.
  37. 37. Isaev A.N. // Chem. Phys. Lett. 2021. V. 763. 138195.
  38. 38. Morokuma K., Kitaura K. Molecular Interactions. York: WileyNew, 1980. P. 21.
  39. 39. Steiner T. // Angew. Chem., Int. Ed. Engl. 2002. V. 41. P. 48.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library