RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Investigation of the Pore Structure of Exfoliated Graphite Based on Highly Oriented Pyrolytic Graphite Nitrate

PII
10.31857/S0044453723060122-1
DOI
10.31857/S0044453723060122
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 6
Pages
827-835
Abstract
Graphite intercalated compounds (GICs) with different stage numbers were prepared from highly oriented pyrolytic graphite (HOPG) and nitric acid using a chemical method. Exfoliated graphite (EG-T) was synthesized from GICs by water treatment followed by thermal shock. The effects of the graphite oxidation depth on the EG-T thermal expansion coefficient, volatile content, and total porosity were examined. However, the main purpose of this work was investigation of the dependence of the inner EG-T pore structure on the level of oxidation. Thus, we studied the micro- and mesopore structure and specific surface area by nitrogen porosimetry and the modern 2D-NLDFT method to calculate the pore size distribution and pore volume. As well, we performed a mercury porosimetry experiment to determine the macropore characteristics. We examined the pore space using a number of scanning electron micrographs of EG-T particle cross-sections using an image processing technique. In this way we showed the strong correlation between the EG-T pore structure parameters and oxidation depth of graphite.
Keywords
терморасширенный графит окисленный графит высокоориентированный пиролитический графит пористая структура NLDFT MDFT
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Chung D.D.L. // J. Mater. Sci. 2016. V. 51. P. 554. https://doi.org/10.1007/s10853-015-9284-6
  2. 2. Inagaki M., Kang F., Toyoda M. et al. // Advanced Materials Science and Engineering of Carbon, Butterworth-Heinemann. 2014. P. 313. https://doi.org/10.1016/B978-0-12-407789-8.00014-4
  3. 3. Wang Z., Han E., Ke W. // Corros. Sci. 2007. V. 49. P. 2237. https://doi.org/10.1016/j.corsci.2006.10.024
  4. 4. Song L.N., Xiao M., Meng Y.Z. // Compos. Sci. Technol. 2006. V. 66. P. 2156. https://doi.org/10.1016/j.compscitech.2005.12.013
  5. 5. Sorokina N.E., Redchitz A.V., Ionov S.G. et al. // J. Phys. Chem. Solids. 2006. V. 67. P. 1202. https://doi.org/10.1016/j.jpcs.2006.01.048
  6. 6. Nayak S.K., Mohanty S., Nayak S.K. // High Perform. Polym. 2019. V. 32. P. 506. https://doi.org/10.1177/0954008319884616
  7. 7. Sorokina N.E., Maksimova N.V., Avdeev V.V. // Inorg. Mater. 2001. V. 37. P. 360. https://doi.org/10.1023/A:1017575710886
  8. 8. Ivanov A.V., Maksimova N.V., Kamaev A.O. et al. // Mater. Lett. 2018. V. 228. P. 403. https://doi.org/10.1016/j.matlet.2018.06.072
  9. 9. Afanasov I.M., Shornikova O.N., Kirilenko D.A. et al. // Carbon. 2010. V. 48. P. 1862. https://doi.org/10.1016/j.carbon.2010.01.055
  10. 10. Forsman W.C., Vogel F.L., Carl D.E. et al. // Ibid. 1978. V. 16. P. 269. https://doi.org/10.1016/0008-6223 (78)90040-4
  11. 11. Sorokina N.E., Maksimova N.V., Avdeev V.V. // Inorg. Mater. 2002. V. 38. P. 564. https://doi.org/10.1023/A:1015857317487
  12. 12. Salvatore M., Carotenuto G., De Nicola S. et al. // Nanoscale Res. Lett. 2017. V. 12. P. 167. https://doi.org/10.1186/s11671-017-1930-2
  13. 13. Dimiev A.M., Shukhina K., Behabtu N. et al. // J. Phys. Chem. C. 2019. V. 123. P. 19246. https://doi.org/10.1021/acs.jpcc.9b06726
  14. 14. Sorokina N.E., Monyakina L.A., Maksimova N.V. et al. // Inorg. Mater. 2002. V. 38. P. 482. https://doi.org/10.1023/A:1015423105964
  15. 15. Leshin V.S., Sorokina N.E., Avdeev V.V. // Ibid. 2004. V. 40. P. 649. https://doi.org/10.1023/B:INMA.0000032001.86743.00
  16. 16. Dunaev A.V., Arkhangelsky I.V., Zubavichus Y.V. et al. // Carbon. 2008. V. 46. P. 788. https://doi.org/10.1016/j.carbon.2008.02.003
  17. 17. Gurzęda B., Buchwald T., Krawczyk P. // J. Solid State Electrochem. 2020. V. 24. P. 1363. https://doi.org/10.1007/s10008-020-04642-x
  18. 18. Efimova E.A., Syrtsova D.A., Teplyakov V.V. // Sep. Purif. Technol. 2017. V. 179. P. 467. https://doi.org/10.1016/j.seppur.2017.02.023
  19. 19. Bodzenta J., Mazur J., Kaźmierczak-Bałata A. // Appl. Phys. B. 2011. V. 105. P. 623. https: //doi.org/.https://doi.org/10.1007/s00340-011-4510-7
  20. 20. Afanasov I.M., Makarenko I.V., Vlasov I.I. et al. // Compact. Expand. Graph. with a Low Therm. Conduct., Curran Associates, Inc., Clemson, South Carolina, USA. 2010: P. 645.
  21. 21. Ivanov A.V., Manylov M.S., Maksimova N.V. et al. // J. Mater. Sci. 2019. V. 54. P. 4457. https://doi.org/10.1007/s10853-018-3151-1
  22. 22. Inagaki M., Tashiro R., Toyoda M. et al. // Ceram. Soc. Jpn. 2004. V. 112-1. P. S1513. https://doi.org/10.14852/jcersjsuppl.112.0.S1513.0
  23. 23. Kang F., Zheng Y.-P., Wang H.-N. et al. // Carbon. 2002. V. 40. P. 1575. https://doi.org/10.1016/S0008-6223 (02)00023-4
  24. 24. Inagaki M., Tashiro R., Washino Y. et al. // J. Phys. Chem. Solids. 2004. V. 65. P. 133. https://doi.org/10.1016/j.jpcs.2003.10.007
  25. 25. Inagaki M., Suwa T. // Carbon. 2001. V. 39. P. 915. https://doi.org/10.1016/S0008-6223 (00)00199-8
  26. 26. Inagaki M., Saji N., Zheng Y.-P. et al. // TANSO. 2004. V. 2004. P. 258. https://doi.org/10.7209/tanso.2004.258
  27. 27. Tryba B., Morawski A.W., Kaleńczuk R.J. et al. // Spill Sci. Technol. Bull. 2003. V. 8. P. 569. https://doi.org/10.1016/S1353-2561 (03)00070-7
  28. 28. Shornikova O.N., Kogan E.V., Petrov D.V. et al. // Pore structure of exfoliated graphite, Curran Associates, Inc., Clemson, South Carolina, USA. 2010: P. 421.
  29. 29. Goudarzi R., Hashemi Motlagh G. // Heliyon. 2019. V. 5. P. e02595. https://doi.org/10.1016/j.heliyon.2019.e02595
  30. 30. Bogdanov S.G., Valiev E.Z., Dorofeev Y.A. et al. // Cryst. Rep. 2006. V. 51. P. S12. https://doi.org/10.1134/S1063774506070030
  31. 31. Sorokina N.E., Monyakina L.A., Maksimova N.V. et al. // Inorg. Mater. 2002. V. 38. P. 482. https://doi.org/10.1023/A:1015423105964
  32. 32. Sorokina N.E., Nikol’skaya I.V., Ionov S.G. et al. // Russ. Chem. Bull. 2005. V. 54. P. 1749. https://doi.org/10.1007/s11172-006-0034-4
  33. 33. Sing K.S.W. // Pure Appl. Chem. 1982. V. 54. P. 2201. https://doi.org/10.1351/pac198254112201
  34. 34. Jagiello J., Olivier J.P. // Carbon. 2012. V. 55. P. 70. https://doi.org/10.1016/j.carbon.2012.12.011
  35. 35. Jagiello J., Olivier J.P. // J. Phys. Chem. C. 2009. V. 113. P. 19382. https://doi.org/10.1021/jp9082147
  36. 36. Ross S., Olivier J.P. // J. Phys. Chem. 1961. V. 65. P. 608. https://doi.org/10.1021/j100822a005
  37. 37. Olivier J.P., Winter M. // J. Power Sources. 2001. V. 97–98. P. 151. https://doi.org/10.1016/S0378-7753 (01)00527-4
  38. 38. Li Z., Peng H., Liu R. et al. // J. Power Sources. 2020. V. 457. P. 228022. https://doi.org/10.1016/j.jpowsour.2020.228022
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library