- PII
- 10.31857/S0044453723060213-1
- DOI
- 10.31857/S0044453723060213
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 6
- Pages
- 860-870
- Abstract
- The reactions of neutral and anionic Au25(SCH3)12 clusters with one H2O2 molecule (mechanism I) and with its dimer (H2O2)2 (mechanism II) have been studied within the framework of the density functional theory (DFT). It has been established that all processes proceed with low activation barriers and a large gain in energy during the formation of products, and also that mechanisms I and II are interconnected. Based on the calculated data, the structure of gold clusters with the most probable active centers for further interaction with methane, which contain one or two O atoms, is proposed. In this case, clusters containing the O2 fragment can form not only in the reaction of the initial cluster Au25(SCH3)12 with hydrogen peroxide, but also with molecular oxygen, since the O2 adsorption energy is low and the process is close to equilibrium.
- Keywords
- кластер золота пероксид водорода механизм реакции метод функционала плотности
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Yaseen M., Humayun M., Khan A. et al. // Energies. 2021. V. 14. № 5. P. 1278. https://doi.org/10.3390/en14051278
- 2. Ishida T., Murayama T., Taketoshi A. et al. // Chem. Rev. 2020. V. 120. № 2. P. 464. https://doi.org/10.1021/acs.chemrev.9b00551
- 3. Li Z., Brouwer C., He C. // Ibid. 2008. V. 108. № 8. P. 3239. https://doi.org/10.1021/cr068434l
- 4. Stratakis M., Garcia H. // Ibid. 2012. V. 112. № 8. P. 4469. https://doi.org/10.1021/cr3000785
- 5. Sankar M., He Q., Engel R.V. et al. // Ibid. 2020. V. 120. № 8. P. 3890. https://doi.org/10.1021/acs.chemrev.9b00662
- 6. Carabineiro S.A.C. // Front. Chem. 2019. V. 7:702. https://doi.org/10.3389/fchem.2019.00702
- 7. Qi G., Davies T.E., Nasrallah A. et al. // Nature Catalysis. 2022. V. 5. № 1. P. 45. https://doi.org/10.1038/s41929-021-00725-8
- 8. Golovanova S.A., Sadkov A.P., Shestakov A.F. // Kinetics and Catalysis. 2020. V. 61. № 5. P. 740. https://doi.org/10.1134/s0023158420040060
- 9. Cai X., Saranya G., Shen K.Q. et al. // Angew. Chem.-Int. Edit. 2019. V. 58. № 29. P. 9964. https://doi.org/10.1002/anie.201903853
- 10. Staykov A., Miwa T., Yoshizawa K. // J. of Catalysis. 2018. V. 364. P. 141. https://doi.org/10.1016/j.jcat.2018.05.017
- 11. Mikami Y., Dhakshinamoorthy A., Alvaro M. et al. // Catal. Sci. Technol. 2013. V. 3. №1. P. 58. https://doi.org/10.1039/c2cy20068f
- 12. Wani I.A., Jain S.K., Khan H. et al. // Curr. Pharm. Biotechnol. 2021. V. 22. № 6. P. 714. https://doi.org/10.2174/1389201022666210218195205
- 13. Nasaruddin R.R., Chen T.K., Yan N. et al. // Coord. Chem. Rev. 2018. V. 368. P. 60. https://doi.org/10.1016/j.ccr.2018.04.016
- 14. Liu L., Li H.Y., Tan Y. et al. // Catalysts. 2020. V. 10. № 1. P. 107. https://doi.org/10.3390/catal10010107
- 15. Asao N., Hatakeyama N., Menggenbateer et al. // Chem. Comm. 2012. V. 48. № 38. P. 4540. https://doi.org/10.1039/c2cc17245c
- 16. Zhu Y., Qian H.F., Drake B.A. et al. // Angew. Chem.-Int. Edit. 2010. V. 49. № 7. P. 1295. https://doi.org/10.1002/anie.200906249
- 17. Tian S.B., Cao Y.T., Chen T.K. et al. // Chem. Comm. 2020. V. 56. № 8. P. 1163. https://doi.org/10.1039/c9cc08215h
- 18. Yao Q.F., Wu Z.N., Liu Z.H. et al. // Chem. Sci. 2021. V. 12. № 1. P. 99. https://doi.org/10.1039/d0sc04620e
- 19. Heaven M.W., Dass A., White P.S. et al. // J. Am. Chem. Soc. 2008. V. 130. № 12. P. 3754. https://doi.org/10.1021/ja800561b
- 20. Zhu M., Aikens C.M., Hollander F.J. et al. // Ibid. 2008. V. 130. № 18. P. 5883. https://doi.org/10.1021/ja801173r
- 21. Wu Z.W., Gayathri C., Gil R.R. et al. // Ibid. 2009. V. 131. № 18. P. 6535. https://doi.org/10.1021/ja900386s
- 22. Juarez-Mosqueda R., Mpourmpakis G. // Phys. Chem. Chem. Phys. 2019. V. 21. № 40. P. 22272. https://doi.org/10.1039/c9cp03982a
- 23. Zhu K.X., Liang S.X., Cui X.J. et al. // Nano Energy. 2021. V. 82. 105718 https://doi.org/10.1016/j.nanoen.2020.105718
- 24. Kang X., Chong H.B., Zhu M.Z. // Nanoscale. 2018. V. 10. № 23. P. 10758. https://doi.org/10.1039/c8nr02973c
- 25. Голованова С.А., Садков А.П., Шестаков А.Ф. // Изв. АН. Сер. Хим. 2022. № 4. С. 665.
- 26. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- 27. Stevens W.J., Bash H., Krauss M. // J. Chem. Phys. 1984. V. 81. № 12. P. 6026.
- 28. Stevens W.J., Krauss M., Bash H. et al. // Can. J. Chem. 1992. V. 70. P. 612.
- 29. Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. Хим. 2005. № 3. С. 804. https://doi.org/10.1007/s11172-005-0329-x
- 30. Nikitenko N.G., Shestakov A.F. // Kinetics and Catalysis. 2014. V. 55. № 4. P. 401. https://doi.org/10.1134/s0023158414030100
- 31. Nikitina N.A., Pichugina D.A., Kuz’menko N.E. // Kinet. Catal. 2019. V. 60. № 5. P. 606. https://doi.org/10.1134/s0023158419050033
- 32. Pichugina D.A., Nikitina N.A., Kuz’menko N.E. // J. Phys. Chem. C. 2020. V. 124. № 5. P. 3080. https://doi.org/10.1021/acs.jpcc.9b10286
- 33. Barone V., Cossi M., Tomasi J. // J. Chem. Phys. 1997. V. 107. № 8. P. 3210. https://doi.org/10.1063/1.474671
- 34. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision A.7. Pittsburgh: Gaussian Inc., 2003.
- 35. Wu Z.K., Jin R.C. // ACS Nano. 2009. V. 3. № 7. P. 2036. https://doi.org/10.1021/nn9004999
- 36. Wang W.L., Ji C.L., Liu K. et al. // Chem. Soc. Rev. 2021. V. 50. № 3. P. 1874. https://doi.org/10.1039/d0cs00254b
- 37. Никитенко Н.Г., Шестаков А.Ф. // Кинетика и катализ. 2013. Т. 54. № 2. С. 177. https://doi.org/10.1134/S0023158413020110
- 38. Никитенко Н.Г., Шестаков А.Ф. // ДАН. 2013. Т. 450. № 2. С. 181. https://doi.org/10.1134/s0012500813050066
- 39. Liu K., Chen T., He S.Y. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 42. P. 12952. https://doi.org/10.1002/anie.201706647
- 40. Liu K., He S.Y., L. Li et al. // Scientific Reports. 2021. V. 11. № 1. https://doi.org/10.1038/s41598-021-89235-y
- 41. Шамб У., Сеттерфилд Ч., Вентворс Р. Перекись водорода. Москва: Изд-во иностр. лит. 1958. 578 с.
- 42. Kelly C.P., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2007. V. 111. № 2. P. 408. https://doi.org/10.1021/jp065403l
- 43. Sivadinarayana C., Choudhary T.V., Daemen L.L. et al. // J. Am. Chem. Soc. 2004. V. 126. № 1. P. 38. https://doi.org/10.1021/ja0381398
- 44. Agarwal N., Thomas L., Nasrallah A. et al. // Catalysis Today. 2021. V. 381. P. 76. https://doi.org/10.1016/j.cattod.2020.09.001
- 45. Yao Z.H., Zhao J.Y., Bunting R.J. et al. // Acs Catalysis. 2021. V. 11. № 3. P. 1202. https://doi.org/10.1021/acscatal.0c04125
- 46. Tang Y.Q., Zhang Z.H., Lu M.K. et al. // Ind. Eng. Chem. Res. 2019. V. 58. № 33. P. 15119. https://doi.org/10.1021/acs.iecr.9b01459
- 47. Beletskaya A.V., Pichugina D.A., Shestakov A.F. et al. // J. Phys. Chem. A. 2013. V. 117. № 31. P. 6817. https://doi.org/10.1021/acs.iecr.9b01459
- 48. Wells D.H., Delgass W.N., Thomson K.T. // J. Catal. 2004. V. 225. № 1. P. 69. https://doi.org/10.1016/j.jcat.2004.03.028
- 49. Barrio L., Liu P., Rodriguez J.A. et al. // J. Phys. Chem. C. 2007. V. 111. № 51. P. 19001. https://doi.org/10.1021/jp073552d
- 50. Ford D.C., Nilekar A.U., Xu Y. et al. // Surface Science. 2010. V. 604. № 19–20. P. 1565. https://doi.org/10.1016/j.susc.2010.05.026
- 51. Joshi A.M., Delgass W.N., Thomson K.T. // J. Phys. Chem. B. 2005. V. 109. № 47. P. 22392. https://doi.org/10.1021/jp052653d
- 52. Ji J., Lu Z., Lei Y., Turner C.H. // Catalysts. 2018. V. 8. № 10. P. 421. https://doi.org/10.3390/catal8100421
- 53. Coperet C. // Chem. Rev. 2010. V. 110. № 2. P. 656. https://doi.org/10.1021/cr900122p