RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Structure of the Nearest Environment of Ions in Aqueous Solutions of Cadmium Chloride and Nitrate According to the Data of X-ray Diffraction Analysis

PII
10.31857/S0044453723060250-1
DOI
10.31857/S0044453723060250
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 6
Pages
805-811
Abstract
Quantitative characteristics of the nearest environment of ions in aqueous solutions of cadmium chloride and nitrate are determined by X-ray diffraction analysis in a wide range of concentrations under standard conditions. It is found that, in the studied systems, the coordination number of the cation increases with dilution from 4 to 6. The structure of solutions in the entire studied range of concentrations is determined by ionic associates of the contact type. In solutions of cadmium nitrate, the nitrate ion is monodentately coordinated to the cation.
Keywords
растворы электролитов рентгенодифракционный анализ структура координационное число
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Caminiti R. // J. Chem. Phys. 1982. V. 77. № 11. P. 5682. https://doi.org/10.1063/1.443774
  2. 2. Caminiti R., Cucca P., Radnai T. // J. Phys. Chem. 1984. V. 88. № 11. P. 2382. https://doi.org/10.1021/j150655a040
  3. 3. Rudolph W., Irmer G. // J. Sol. Chem. 1994. V. 23. № 6. P. 663.
  4. 4. Rudolph W.W. // J. Chem. Soc. Faraday Trans. 1998. V. 94. № 4. P. 489. https://doi.org/10.1039/A705212J
  5. 5. Sadoc A., Lagarde P., Vlaic G. // J. Phys. C: Solid State Phys. 1985. V. 18. № 1. P. 23.
  6. 6. Rudolph W.W., Pye C.C. // J. Phys. Chem. 1998. V. 102. № 18. P. 3564. https://doi.org/10.1021/jp973037n
  7. 7. Kritayakornupong C., Plankensteiner K., Rode B.M. // J. Phys. Chem. 2003. V. 107. № 48. P. 10330. https://doi.org/10.1021/jp0354548
  8. 8. de-Araujo A.S., Sonoda M.T., Piro O.E. et al. // J. Phys. Chem. B. 2007. V. 111. № 9. P. 2219. https://doi.org/10.1021/jp064835t
  9. 9. Chillemi G., Barone V., D’Angelo P. et al. // J. Phys. Chem. 2005. V. 109. № 18. P. 9186. https://doi.org/10.1021/jp0504625
  10. 10. D’Angelo P., Chillemi G., Barone V. et al. // Ibid. 2005. V. 109. № 18. P. 9178. https://doi.org/10.1021/jp050460k
  11. 11. D’Angelo P., Migliorati V., Mancini G. et al. // J. Phys. Chem. A. 2008. V. 112. № 46. P. 11833. https://doi.org/10.1021/jp806098r
  12. 12. Yuan X., Zhang C. // Comput. Theor. Chem. 2020. V. 1171. P. 112666. https://doi.org/1016/j.comptc.2019.112666
  13. 13. Смирнов П.Р., Гречин О.В. // Журн. физ. химии. 2017. Т. 91. № 3. С. 474. Russ. J. Phys. Chem. A. 2017. V. 91. № 3. P. 517. https://doi.org/10.1134/S0036024417030268
  14. 14. Смирнов П.Р., Гречин О.В. // Там же. 2019. Т. 93. № 11. С. 1709. Russ. J. Phys. Chem. A. 2019. V. 93. № 11. P. 2213. https://doi.org/10.1134/S0036024419110281
  15. 15. Novotny P., Söhnel O. // J. Chem. Eng. Data. 1988. V. 33. № 1. P. 49.
  16. 16. OriginPro 7.5. Copyright 1991–2003. OriginLab Corporation. USA.
  17. 17. Johansson G., Sandstrom M. // Chem. Scripta. 1973. V. 4. № 5. P. 195.
  18. 18. Bazarkina E.F., Pokrovski G.S., Zotov A.V. et al. // Chem. Geology. 2010. V. 276. № 1–2. P. 1. https://doi.org/10.1016/j.chemgeo.2010.03.006
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library