RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties

PII
10.31857/S004445372307004X-1
DOI
10.31857/S004445372307004X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 7
Pages
996-1010
Abstract
Acenaphtho[1,2-k]fluoranthene (1) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene (2) on activated γ-Al2O3. Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol (1b). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1, 1b, and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.
Keywords
полициклические ароматические углеводороды дегидрофторирование сродство к электрону спектроскопия диссоциативного захвата электронов отрицательные ионы циклическая вольтамперометрия спектроскопия поглощения электронные переходы флуоресценция нестационарная теория функционала плотности
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Ostroverkhova O. // Chem. Rev. 2016. V. 116. № 22. P. 13279.
  2. 2. Wang C., Dong H., Hu W. et al. // Ibid. 2012. V. 112. № 4. P. 2208.
  3. 3. Segawa Y., Ito H., Itami K. // Nat. Rev. Mater. 2016. V. 1. № 1. P. 15002.
  4. 4. Solà M. // Front. Chem. 2013. V. 1. P. 22.
  5. 5. Majewski M.A., Stępień M. // Angew. Chem. Int. Ed. 2019. V. 58. № 1. P. 86.
  6. 6. Amsharov K.Yu., Kabdulov M.A., Jansen M. // Ibid. 2012. V. 51. № 19. P. 4594.
  7. 7. Koper C., Sarobe M., Jenneskens L.W. // Phys. Chem. Chem. Phys. 2004. V. 6. № 2. P. 319.
  8. 8. Lu R.-Q., Zheng Y.-Q., Zhou Y.-N. et al. // J. Mater. Chem. A. 2014. V. 2. № 48. P. 20515.
  9. 9. Akhmetov V., Feofanov M., Papaianina O. et al. // Chem. Eur. J. 2019. V. 25. № 50. P. 11609.
  10. 10. Gracheva S.V., Yankova T.S., Kosaya M.P. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 4. P. 26998.
  11. 11. Sheldrick G.M. // Acta Cryst. 2008. V. A64. P. 112.
  12. 12. Trasatti S. // Pure Appl. Chem. 1988. V. 58. P. 955.
  13. 13. Cardona C.M., Li W., Kaifer A.E. et al. // Adv. Mater. 2011. V. 23. № 20. P. 2367.
  14. 14. Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981. 163 с.
  15. 15. Pshenichnyuk S.A., Vorob’ev A.S., Modelli A. // J. Chem. Phys. 2011. V. 135. № 18. P. 184301.
  16. 16. Edelson D., Griffiths J.E., McAfee K.B. // Ibid. 1962. V. 37. № 4. P. 917.
  17. 17. Пшеничнюк С.А., Асфандиаров Н.Л., Воробьев А.С., Матейчик Ш. // Успехи. физ. наук. 2022. Т. 192. С. 177 (Pshenichnyuk S.A., Asfandiarov N.L., Vorob’ev A.S. et al. // Phys.-Usp. 2022. V. 65. № 2. P. 163).
  18. 18. Lorquet J.C. // Mass Spectrom. Rev. 1994. V. 13. № 3. P. 233.
  19. 19. Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Commun. Mass Spectrom. 2015. V. 29. № 9. P. 910.
  20. 20. Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Ibid. 2014. V. 28. № 14. P. 1580.
  21. 21. Макаров А.А., Малиновский А.Л., Рябов Е.А. // Успехи. физ. наук. 2012. Т. 182. С. 1047 (Makarov A.A., Malinovsky A.L., Ryabov E.A. // Phys.-Usp. 2012. V.55. № 10. P. 977).
  22. 22. Chen E.S., Chen E.C.M. // Rapid Commun Mass Spectrom. 2018. V. 32. № 7. P. 604.
  23. 23. Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A. et al. // J. Chem. Phys. 2021. V. 155. № 24. P. 244302.
  24. 24. Asfandiarov N.L., Muftakhov M.V., Rakhmeev R.G. et al. // J. Electron. Spectros. Relat. Phenomena. 2022. V. 256. P. 147178.
  25. 25. Schulz G.J. // Rev. Mod. Phys. 1973. V. 45. № 3. P. 378.
  26. 26. Jordan K.D., Burrow P.D. // Chem. Rev. 1987. V. 87. № 3. P. 557.
  27. 27. Scheer A.M., Burrow P.D. // J. Phys. Chem. B. 2006. V. 110. № 36. P. 17751.
  28. 28. Modelli A. // Phys. Chem. Chem. Phys. 2003. V. 5. № 14. P. 2923.
  29. 29. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  30. 30. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  31. 31. Granovsky A.A. Firefly v. 8.2.0 (Formerly PC GAMESS), http://classic.chem.msu.su/gran/firefly/index.html. 2016.
  32. 32. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
  33. 33. Vladimir A., Mikhail F., Amsharov K. // RSC Adv. 2020. V. 10. № 18. P. 10879.
  34. 34. Papaianina O., Amsharov K.Yu. // Chem. Commun. 2016. V. 52. № 7. P. 1505.
  35. 35. Amsharov K. // Phys. Status Solidi B. 2016. V. 253. № 12. P. 2473.
  36. 36. Bayer J., Herberger J., Holz L. et al. // Chem. Eur. J. 2020. V. 26. № 72. P. 17546.
  37. 37. Papaianina O., Akhmetov V.A., Goryunkov A.A. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 17. P. 4834.
  38. 38. Prins R. // J. Catal. 2020. V. 392. P. 336.
  39. 39. Levin I., Brandon D. // J. Am. Ceram. Soc. 2005. V. 81. № 8. P. 1995.
  40. 40. Илленбергер Е., Смирнов Б.М. // Успехи. физ. наук. 1998. Т. 168. С. 731 (Illenberger E., Smirnov B.M. // Phys.-Usp. 1998. V. 41. № 7. P. 651).
  41. 41. Christophorou L.G. // Adv. Electron. Electron Phys. 1978. V. 46. P. 55.
  42. 42. Collins P.M., Christophorou L.G., Chaney E.L. et al. // Chem. Phys. Lett. 1970. V. 4. № 10. P. 646.
  43. 43. Васильев Ю.В., Мазунов В.А. // Письма в ЖЭТФ. 1990. Т. 51. С. 129 (Vasil’ev Yu.V., Mazunov V.A. // JETP Lett. 1990. V. 51. P. 144).
  44. 44. Spisak S.N., Li J., Rogachev A.Yu. et al. // Organometallics. 2016. V. 35. P. 3105.
  45. 45. Plummer B.F., Steffen I.K., Braley T.L. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 11542.
  46. 46. Berlman I. Handbook of florescence spectra of Aromatic Molecules. 2nd Edition. New York and London: Academic Press. 1971. P. 473.
  47. 47. Clar E., Stephen J.F. // Tetrahedron. 1964. V. 20. № 6. P. 1559.
  48. 48. Plummer B.F., Plummer J.M., Reese W.G. // J. Phys. Chem. 1994. V. 98. № 31. P. 7470.
  49. 49. Bard A.J., Faulkner L.R. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley, 2001. P. 833.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library