- Код статьи
- 10.31857/S0044453723070269-1
- DOI
- 10.31857/S0044453723070269
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 97 / Номер выпуска 7
- Страницы
- 944-951
- Аннотация
- Методами инфракрасной спектроскопия диффузного отражения адсорбированного монооксида углерода и рентгеновской абсорбционной спектроскопии исследованы цеолитные катализаторы конверсии диметилового эфира в низшие олефины с одноатомным распределением родия. Для одноатомного распределения активного компонента на поверхности носителя цеолит предварительно обрабатывали ультразвуком, а в качестве среды для диспергирования родия на стадии пропитки использовали полимер (гидрохлорид хитозана). Для сравнения исследован образец, приготовленный методом традиционной пропитки цеолита водным раствором хлорида родия. Показано, что независимо от способа нанесения с участием полимера или без него родий в структуре цеолита, обработанного ультразвуком, находится в виде изолированных металлических центров. Использование хитозана при синтезе способствует более дисперсному распределению родия на внешней поверхности цеолита и большей окислительной способности катализатора.
- Ключевые слова
- цеолитные катализаторы модифицирование родием ИК-спектроскопия адсорбированного СО
- Дата публикации
- 12.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 5
Библиография
- 1. Naranov E.R., Dement’ev K.I., Gerzeliev I.M. et al. // Pet. Chem. 2019. V. 59. № 3. P. 247. https://doi.org/10.1134/S0965544119030101
- 2. Kolesnichenko N.V., Ezhova N.N., Snatenkova Yu.M. // Russ. Chem. Rev. 2020. V. 89. № 2. P. 191. [Колесниченко Н.В., Ежова Н.Н., Снатенкова Ю.М. // Успехи химии. 2020. Т. 89. № 2. С. 191. https://doi.org/10.1070/RCR4900].10.1070/RCR4900
- 3. Khadzhiev S.N., Ezhova N.N., Yashina O.V. // Pet. Chem. 2017. V. 57. № 7. P. 553. [Хаджиев С.Н., Ежова Н.Н., Яшина О.В. // Нефтехимия. 2017. Т. 2. № 1. С. 3. https://doi.org/10.1134/S241421581701004X]https://doi.org/10.1134/S0965544117070040
- 4. Ezhova N.N., Kolesnichenko N.V., Batova T.I. // Pet. Chem. 2020. V. 60. № 4. P. 459. [Ежова Н.Н., Колесниченко Н.В., Батова Т.И. // Нефтехимия. 2020. Т. 2. № 1. С. 74. https://doi.org/10.53392/27130304_2020_2_1_74]https://doi.org/10.1134/S0965544120040064
- 5. Samantaray M.K., D’Elia V., Pump E. et al. // Chem. Rev. 2020. V. 120. P. 734. https://doi.org/10.1021/acs.chemrev.9b00238
- 6. Ding Sh., Hülsey M.J., Pérez-Ramírez J., Yan N. // Joule. 2019. V. 3. P. 2897. https://doi.org/10.1016/j.joule.2019.09.015
- 7. Bai S., Liu F., Huang B. et al. // Nat. Commun. 2020. V. 11. P. 954. https://doi.org/10.1038/s41467-020-14742-x
- 8. Zhang T., Chen Z., Walsh A.G. et al. // Adv. Mater. 2020. V. 32. № 44. P. 2002910. https://doi.org/10.1002/adma.202002910
- 9. Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. № 21. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
- 10. Budiman A.W., Nam J.S., Park J.H. et al. // Catal. Surv. Asia. 2016. V. 20. P. 173.https://doi.org/10.1007/s10563-016-9215-9
- 11. Ren Z., Lyu Y., Song X. et al. // Adv. Mater. 2019. V. 31. P. 1904976. https://doi.org/10.1002/adma.201904976
- 12. Ren Z., Lyu Y., Feng S. et al. // Mol. Catal. 2017. V. 442. P. 83. https://doi.org/10.1016/j.mcat.2017.09.007
- 13. Park K., Lim S., Baik J.H. et al. // Catal. Sci. Technol. 2018. V. 8. P. 2894. https://doi.org/10.1039/C8CY00294K
- 14. Saikia P.K., Sarmah P.P., Borah B.J. et al. // J. Mol. Catal. A: Chem. 2016. V. 412. P. 27. https://doi.org/10.1016/j.molcata.2015.11.015
- 15. Qi J., Finzel J., Robatjazi H.et al. // J. Am. Chem. Soc. 2020. V. 142. № 33. P. 14178. https://doi.org/10.1021/jacs.0c05026
- 16. Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
- 17. Batova T.I., Obukhova T.K., Stashenko A.N. et al. // Pet. Chem. 2022. V. 62. P. 425. https://doi.org/10.1134/S0965544122020165
- 18. Babucci M., Guntida A., Gates B.C. // Chem. Rev. 2020. V. 120. № 21. P. 11956. https://doi.org/10.1021/acs.chemrev.0c00864
- 19. Ogino I., Gates B.C. // J. Phys. Chem. C. 2010. V. 114. № 18. P. 8405. https://doi.org/10.1021/jp100673y
- 20. Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
- 21. Asokan C., Thang H.V., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
- 22. Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
- 23. Hou Y., Ogasawara S., Fukuoka A., Kobayashi H. // Catal. Sci. Technol. 2017. V. 7. P. 6132. https://doi.org/10.1039/C7CY02183F
- 24. Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- 25. Trofimova N., Veligzhanin A., Murzin V. et al. // Ross. Nanotechnol. 2013. V. 8. P. 396. https://doi.org/10.1134/S1995078013030191
- 26. Ravel B., Newville M. // J. Synchrotron. Rad. 2005. V. 12. P. 537 https://doi.org/10.1107/S0909049505012719
- 27. Newille M. // J. Synchrotron. Rad. 2001. V. 8. 322. https://doi.org/10.1107/S0909049500016964
- 28. Sun Q., Wang N., Zhang T. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 51. P. 18570. https://doi.org/10.1002/anie.201912367
- 29. Liang A.J., Gates B.C. // J. Phys. Chem. C. 2008. V. 112. P. 18039. https://doi.org/10.1021/jp805917g
- 30. Kolesnichenko N.V., Snatenkova Y.M., Batova T.I. et al. // Microporous Mesoporous Mater. 2022. V. 330. P. 111581. https://doi.org/10.1016/j.micromeso.2021.111581
- 31. Bulanek R., Voleska I., Ivanova E. et al. // J. Phys. Chem. C. 2009. V. 113. № 25. P. 11066. https://doi.org/10.1021/jp901575p
- 32. Voleská I., Nachtigall P., Ivanova E. et al. // Catal. Today. 2015. V. 243. P. 53. https://doi.org/10.1016/j.cattod.2014.07.029
- 33. Arean C.O., Nachtigallova D., Nachtigall P. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. No. 12. P. 1421. https://doi.org/10.1039/b615535a
- 34. Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. p.668.
- 35. Shilina M.I., Udalova O.V., Nevskaya S.M. // Kinet. Catal. 2013. V. 54. P. 691. [Шилина М.И, Удалова О.В., Невская С.М. // Кинетика и катализ. 2013. Т. 54. № 6. С. 731. https://doi.org/10.7868/S0453881113060117]https://doi.org/10.1134/S0023158413060116
- 36. Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // J. Catal. 2005. V. 236. P. 168–171. https://doi.org/10.1016/j.jcat.2005.09.017
- 37. Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007