- PII
- 10.31857/S0044453723080265-1
- DOI
- 10.31857/S0044453723080265
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 8
- Pages
- 1087-1096
- Abstract
- This paper presents the results of a study of the KFe0.33W1.67O6 system. The compound was obtained by a solid-phase synthesis method at a temperature of 1073 K. The structural, morphological, and spectroscopic properties of KFe0.33W1.67O6 were characterized using XRD, SEM-EDS. The compound crystallizes in a cubic lattice with the space group Fd–3m (227). The obtained lattice parameter a = 10.3697 (3) Å. The phase transitions of KFe0.33W1.67O6 were determined by low-temperature and high-temperature X-ray diffraction. The temperature dependence of heat capacity of KFe0.33W1.67O6 has been measured for the first time in the range from 5 to 638 K by precision adiabatic vacuum calorimetry and differential scanning calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C∘p∘(T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K.
- Keywords
- пирохлор KFe<sub>0.33</sub>W<sub>1.67</sub>O<sub>6</sub> адиабатическая вакуумная калориметрия теплоемкость термодинамические функции
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Deepa M., Prabhakar Rao P., Radhakrishnan A.N. et al. // Mater.Res.Bull. 2009. V. 44. P. 1481.
- 2. Sibi K.S., Radhakrishnan A.N., Deepa M. et al. // Solid State Ion. 2009. V. 180. P. 1164.
- 3. Díaz-Guillén J.A., Fuentes A.F., Díaz-Guillén M.R. et al. // J. Power Sources. 2009. V. 186. P. 349.
- 4. Knoke G.T., Niazi A., Hil J.M. et al. // Matter Mater. Phys. 2007. V. 76. P. 054439–1.
- 5. Hirayama M., Sonoyama N., Yamada A. et al. // J. Lumin. 2008. V. 128. P. 1819.
- 6. Zhang A., Lu M., Yang Z. et al. // Solid State Sci. 2008. V. 10. P. 74.
- 7. Ewing R.C. // Proc. Natl. Acad. Sci. U.S.A. 1999. V. 96. P. 3432.
- 8. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
- 9. Ringwood A.E., Kesson S.E., Ware N.G. et al. // Nature. 1979. V. 278. P. 219.
- 10. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Solid State Ion. 2006. V. 177. P. 1149.
- 11. Abrantes J.C.C., Levchenko A., Shlyakhtina A.V. et al. // Solid State Ion. 2006. V. 177. P. 1785.
- 12. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Mater. Sci. Forum. 2006. V. 515. P. 422.
- 13. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ion. 2006. V. 176. P. 2297.
- 14. Sohn J.M., Kim M.R., Woo S.I. // Catal. Today. 2003. V. 83. P. 289.
- 15. Ting-ting T., Li-xi W., Qi-tu Z. // J. Alloy. Compd. 2009. V. 486. P. 606.
- 16. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1.
- 17. Ravi G., Sravan Kumar K., Guje R. et al. // J Solid State Chem. 2016. V. 233. P. 342.
- 18. Ravi R., Palla S., Kumar Veldurthi N. et al. // Int. J. Hydrog. Energy. 2014. V. 39. P. 15352e.
- 19. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim Acta. 2010. V. 499. P. 155.
- 20. Knyazev A.V., Mączka M., Kuznetsova N.Yu. et al. // J. Therm. Anal. Calorim. 2009. V. 98. P. 843.
- 21. Knyazev A.V., Chernorukov N.G., Smirnova N.N. et al. // Thermochim Acta. 2008. V. 470. P. 47.
- 22. Knyazev A.V., Paraguassu W., Blokhina A.G. et al. // Thermodynamic and spectroscopic properties of KNbTeO6. J. Chem. Thermodynamics. 2017. V. 107. P. 26.
- 23. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210.
- 24. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // Chem. Thermodyn. 2009. V. 41. P. 46.
- 25. Babel D., Pausewang D., Viebahn W. et al. // Z NATURFORSCH B. 1967. V. 22. P. 1219.
- 26. Chase M.W. NIST-JANAF thermochemical tables (Monograph 9) // J. Phys. Chem. Ref. Data 1998. P. 59.
- 27. Cox J.D., Wagman D.D., Medvedev V.A. Codata Key Values for Thermodynamics. New York, 1984. 60 p.
- 28. Mączka M., Knyazev A.V., Kuznetsova N.Yu. et al. // J. Raman Spectrosc. 2011. V. 42. P. 529.
- 29. Knyazev A.V., Mączka M., Kuznetsova N.Yu. // Thermochim Acta. 2010. V. 506. P. 20.