RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

1,3-Dimethyl-2-phenyl-1Н-benzo[d]imidazolium Iodide—A Representative of a New Class in the Family of Metal-Free Organic Catalysts: Electrochemical Properties and Electrocatalytic Activity in the Reaction of Formation of Molecular Hydrogen

PII
10.31857/S0044453723090042-1
DOI
10.31857/S0044453723090042
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1362-1368
Abstract
The electrochemical properties and electrocatalytic activity of 1,3-dimethyl-2-phenyl-1H-benzo[d]imidazolium-3 iodide (I), a representative of a new class of organic metal-free electrocatalysts, in the reaction of formation of molecular hydrogen, in the presence of acids of various strengths (methanesulfonic acid (CH3SO3H), perchloric acid (HClO4), and trifluoroacetic acid (CF3COOH)) have been studied. It is shown that the efficiency of the electrocatalytic process strongly depends on pKa of the acids used. Using gas chromatography and preparative electrolysis at half-wave potentials, it was shown that molecular hydrogen formed with high Faraday yields in all cases. The behavior of the catalytic wave on the cyclic voltammogram (CV), at various ratios of acid and catalyst concentrations in the presence of all acids is typical for the process proceeding according to a homogeneous mechanism. The mechanism of the process was studied by the density functional method (DFT), and its main intermediates were identified. The protonation of electrochemically generated radicals at the C-2 carbon atom of compound I, with the formation of a C-protonated radical cation, was shown to be the key stage of the electrocatalytic hydrogen evolution reaction (HER).
Keywords
молекулярный водород безметальные катализаторы бензимидазол
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Turner J.A. // Science. 2004. V. 305. P. 972.https://doi.org/10.1126/science.1103197
  2. 2. Chisholm G., Zhao T., Cronin L. // Elsevier. 2022. P. 559.https://doi.org/10.1016/B978-0-12-824510-1.00015-5
  3. 3. Armaroli N., Balzani V. // ChemSusChem. 2011. V. 4. P. 21.
  4. 4. Hosseini S.R., Ghasemi S., Ghasemi S.A. // ChemistrySelect. 2019. V. 4. № 23. P. 6854–6861. https://doi.org/10.1002/slct.201901419
  5. 5. Belhadj H., Messaoudi Y., Khelladi M.R. et al. // Intern. J. of Hydrogen Energy. 2022. V. 47. № 46. P. 20129.https://doi.org/10.1016/j.ijhydene.2022.04.151
  6. 6. Gao X., Deng H., Dai Q. et al. // Catalysts. 2021. V. 12. № 1. P. 2. https://doi.org/10.3390/catal12010002
  7. 7. Das M., Khan Z.B., Biswas A. et al. // Inorg. Chem. 2022. V. 61. № 45. P. 18253. https://doi.org/10.1021/acs.inorgchem.2c03074
  8. 8. Zhao Y., Zhang J., Zhang W. et al // Intern. J. of Hydrogen Energy. 2021. V. 46. № 72. P. 35550. https://doi.org/10.1016/j.ijhydene.2021.03.085
  9. 9. Sun H., Xu X., Song Y. et al. // Adv. Funct. Mater. 2021. V. 31. № 16. P. 2009779. https://doi.org/10.1002/adfm.202009779
  10. 10. Mairanovskii S.G. // Russian Chemical Reviews 1991. V. 60. P. 1085. https://doi.org/10.1070/RC1991v060n10ABEH001131
  11. 11. Dolganov A.V., Tarasova O.V., Ivleva A.Y.  et al. // Intern. J. of Hydrogen Energy. 2017. V. 42. № 44. P. 27084. https://doi.org/10.1016/j.ijhydene.2017.09.080
  12. 12. Dolganov A.V., Tarasova O.V., Moiseeva D.N. et al // Intern. J. of Hydrogen Energy. 2016. V. 41. № 22. P. 9312. https://doi.org/10.1016/j.ijhydene.2016.03.131
  13. 13. Dolganov A.V., Balandina A.V., Chugunov D.B. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 7. P. 1229.https://doi.org/10.1134/S1070363220070099
  14. 14. Dolganov A.V., Tanaseichuk B.S., Pryanichnikova M.K. et al. // J. Phys. Org. Chem. 2019. V. 32. № 5. e3930.https://doi.org/10.1002/poc.3930
  15. 15. Dolganov A.V., Muryumin E.E., Chernyaeva O.Y. et al. // Materials Chemistry and Physics. 2019. V. 224. P. 148.https://doi.org/10.1016/j.matchemphys.2018.12.006
  16. 16. Dolganov A.V., Tanaseichuk, B.S., Tsebulaeva Y.V. et al. // Int. J. Electrochem. Sci. 2016. P. 9559.https://doi.org/10.20964/2016.11.24
  17. 17. Dolganov A.V., Tarasova O.V., Balandina A.V. et al. // Russ. J. Org. Chem. 2019. V. 55. № 7. P. 938.https://doi.org/10.1134/S1070428019070030
  18. 18. Dolganov A.V., Tanaseichuk B.S., Yurova V.Yu et al. // Intern. J. of Hydrogen Energy 2019. V. 44. № 39. P. 21495.https://doi.org/10.1016/j.ijhydene.2019.06.067
  19. 19. Dolganov A.V., Tanaseichuk B.S., Moiseeva D.N. et al. // Electrochem. Commun. 2016. V. 68. P. 59.https://doi.org/10.1016/j.elecom.2016.04.015
  20. 20. Dolganov A.V., Chernyaeva O.Y., Kostryukov S.G. et al. // Intern. J. of Hydrogen Energy. 2020. V. 45. № 1. P. 501.https://doi.org/10.1016/j.ijhydene.2019.10.175
  21. 21. Dolganov A.V., Tanaseichuk B.S., Tarasova O.V. et al. // Russ. J. Electrochem.2019. V. 55. № 8. P. 807.https://doi.org/10.1134/S1023193519080056
  22. 22. Ganz O.Yu., Klimaeva L.A., Chugunov D.B. et al. // Russ. J. Phys. Chem. 2022. V. 96. № 5. P. 954.https://doi.org/10.1134/S0036024422050120
  23. 23. Zhu X.-Q., Zhang M.-T., Yu A. et al. // J. Am. Chem. Soc. 2008. V. 13. № 8. P. 2501.https://doi.org/10.1021/ja075523m
  24. 24. Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. № 45. P. 11623. https://doi.org/10.1021/j100096a001
  25. 25. Ditchfield R., Hehre W.J., Pople J.A. // The J. of Chem. Physics 1971. V. 54. № 2. P. 724. https://doi.org/10.1063/1.1674902
  26. 26. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347. https://doi.org/10.1002/jcc.540141112
  27. 27. Felton G.A.N., Glass R.S., Lichtenberger D.L. et al. // Inorg. Chem. 2006. V. 45. № 23. P. 9181. https://doi.org/10.1021/ic060984e
  28. 28. Savéant J.-M. // ACS Catal. 2018. V. 8. № 8. P. 7608.https://doi.org/10.1021/acscatal.8b02007
  29. 29. Savéant J.-M. // Chem. Rev. 2008. V. 108. № 7. P. 2348.https://doi.org/10.1021/cr068079z
  30. 30. Saveant J.-M. // ChemElectroChem. 2016. V. 3. № 12. P. 1967.https://doi.org/10.1002/celc.201600430
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library