ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Влияние природы фонового электролита на термодинамические параметры ступенчатой диссоциации глицил-D-фенилаланина в водном растворе

Код статьи
10.31857/S004445372309011X-1
DOI
10.31857/S004445372309011X
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 97 / Номер выпуска 9
Страницы
1248-1253
Аннотация
Из результатов прямых калориметрических измерений, выполненных на калориметре с изотермической оболочкой и автоматической записью кривой температура−время, рассчитаны тепловые эффекты кислотной и основной диссоциации дипептида глицил-D-фенилаланина при температуре 298.15 К и трех значениях ионной силы раствора 0.5 моль/л; 0.75 моль/л и 1.0 моль/л на фоне различных по своей природе фоновых электролитов. Рассмотрено влияние природы фоновых электролитов NaCl, NaClO4, NaNO3, KNO3, LiNO3 на тепловые эффекты ступенчатой диссоциации дипептида. Экстраполяцией на нулевую ионную силу найдены значения стандартных тепловых эффектов ионизации глицил-D-фенилаланина по двум ступеням. Рассчитаны стандартные изменения термодинамических функций (энтальпии, энтропии и энергии Гиббса) в процессах кислотной и основной диссоциации дипептида глицил-D-фенилаланина.
Ключевые слова
глицил-D<b>-</b>фенилаланин пептиды калориметрия энтальпия растворы
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
5

Библиография

  1. 1. Sukhareva M.S., Kopeykin P.M., Zharkova M.S., Shamova O.V. // Medical Academic Journal. 2019. V. 19. № S. P. 180. https://doi.org/10.17816/MAJ191S1180-181
  2. 2. Neklyudov A.D., Denyakina E.K. // Applied Biochemistry and Microbiology. 2004. V. 40. № 4. P. 370. [Неклюдов А.Д., Денякина Е.К. // Прикладная биохимия и микробиология. 2004. Т. 40. № 4. С. 435].https://doi.org/10.1023/B:ABIM.0000033913.63770
  3. 3. Inozemtsev A.N., Berezhnoy D.S., Fedorova T.N., Stvolinsky S.L. // Dokl. Biolog. Sciences. 2014. V. 454. № 1. P. 16. [Иноземцев А.Н., Бережной Д.С., Федорова Т.Н., Стволинский С.Л. // Докл. АН. 2014. Т. 454. № 5. С. 606].https://doi.org/10.1134/S0012496614010177
  4. 4. Brel A.K., Lisina S.V., Budaeva Y.N. // Rus. J. of Organic Chemistry. 2021. V. 57. № 4. P. 540. [Брель А.К., Лисина С.В., Будаева Ю.Н. // Журн. орган. химии. 2021. Т. 57. № 4. С. 517].https://doi.org/10.1134/S1070428021040060
  5. 5. Тюнина Е.Ю., Баранников В.П., Дунаева В.В., Краснов А.В. // Журн. физ. химии. 2022. Т. 96. № 4. С. 479. https://doi.org/10.31857/S0044453722040331
  6. 6. Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Therm. Anal. Calorim. 2017. V. 130. P. 457. https://doi.org/10.1007/s10973017- 6134-6
  7. 7. Lytkin A.I., Chernikov V.V., Krutova O.N. et al. // Rus. J. of Phys. Chem. A. 2022. V. 96. № 8. Р. 1698. [Лыткин А.И., Крутова О.Н., Черников В.В., Крутов П.Д., Романов Р.А // Журн. физ. химии. 2022. Т. 96. № 8. С. 1155]https://doi.org/10.1134/S0036024422080131
  8. 8. Lytkin A.I., Krutova O.N., Tyunina E.Yu. et al. // Rus. J. of Phys. Chem. A. 2021. V. 95. № 10. Р.2053. [Лыткин А.И., Крутова О.Н., Тюнина Е.Ю. и др. // Журн. физ. химии. 2021. Т. 95. № 10. с. 1530].https://doi.org/10.1134/S0036024421100162
  9. 9. Shoukry M., Khairy E., El-Sherif A. // Transition Met. Chem. 2002. V. 27. P. 656. https://doi.org/10.1023/A:1019831618658
  10. 10. Nair M., Subbalakshmi G. // Indian J. Chem. 2000. V. 39A. P. 468.
  11. 11. Agoston C., Jankowska T., Sovago I. // J. Chem. Soc. Dalton Trans.1999. P. 3295. https://doi.org/10.1039/a904000e
  12. 12. Kufelnicki A. // Pol. J. Chem. 1992. V. 66. P. 1077.
  13. 13. Jezowska-Bojczuk M., Kozlowski H., Sovago I. et al. // Polyhedron. 1991. V. 10. P. 2331. https://doi.org/10.1016/S0277-5387 (00)86157-4
  14. 14. Brookes G., Pettit L. // J. Chem. Soc. Dalton Trans. 1975. P. 2106. https://doi.org/1039/dt9750002106
  15. 15. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Наука, 1982. 262 с.
  16. 16. Krutova O.N., Lytkin A.I., Chernikov V.V. et al. // J. of Molecular Liquids. 2021. P. 116773. https://doi.org/10.1016/j.molliq.2021.116773
  17. 17. Tyunina E., Krutova O., Lytkin A.I. // Thermochimica Acta. 2020. V. 690. P. 178704. https://doi.org/10.1016/j.tca.2020.178704 2020
  18. 18. Parcker W.B. Thermal Properties of Aqueous Uni-univalent Electrolytes. Washington: NSRDS-NBS, 1965. B. 2. P. 342.
  19. 19. Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200–205. https://doi.org/10.1016/j.talanta.2019.01.107
  20. 20. Васильев В.П., Шеханова Л.Д. // Журн. неорган. химии. 1974. Т. 19. № 11. С. 2969.
  21. 21. Васильев В.П. // Журн. координац. химии. 2004. Т. 30 (1). С. 73.
  22. 22. Гридчин С.Н. // Журн. общ. химии. 2015. Т. 85. № 4. С. 563.
  23. 23. Kochergina L.A., Vasil’ev V.P., Krutova O.N. // Rus. J. of Phys. Chem. A. 2008. Т. 82. № 3. С. 348. [Кочергина Л.А., Васильев В.П., Крутова О.Н. // Журн. физ. химии. 2008. Т. 82. № 3. С. 426.].
  24. 24. Lytkin A.I., Chernikov V.V., Krutova O.N. // Ibid. 2016. Т. 90. № 8. С. 1530. [Лыткин А.И., Черников В.В., Крутова О.Н. // Там же. 2016. Т. 90. № 8. С. 1160].https://doi.org/10.7868/S0044453716080173
  25. 25. Васильев В.П., Кочергина Л.А. // Журн. физ. химии. 1967. Т. 41. С. 1287.
  26. 26. Kochergina L.A., Vasil’ev V.P., Krutov D.V., Krutova O.N. // Rus. J. of Phys. Chemistry A. 2008. Т. 82. № 4. С. 565. [Кочергина Л.А., Васильев В.П., Крутов Д.В., Крутова О.Н. // Журн. физ. химии. 2008. Т. 82. № 4. С. 662].
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека