- PII
- 10.31857/S0044453723090133-1
- DOI
- 10.31857/S0044453723090133
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 9
- Pages
- 1324-1328
- Abstract
- Enzymatic catalysis is characterized by multistage chemical reactions from enzyme-substrate complexes to products. In a number of cases, in the course of experimental studies, it is possible to characterize the structures and properties of intermediates of complex chemical reactions in proteins. The use of modern computer simulation methods makes it possible to significantly supplement the knowledge of the mechanisms of enzymatic catalysis reactions and provide detailed data on reaction intermediates, including structures with atomic resolution. The materials accumulated to date make it possible to create a unique dat-abase called ENIAD (ENzyme-In-Action-Databank). The article describes the principles of building the ENIAD database, as well as a multiplatform web interface for accessing data (https://lcc.chem.msu.ru/eniad/).
- Keywords
- ферментативный катализ реакционные интермедиаты молекулярное моделирование базы данных
- Date of publication
- 13.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Варфоломеев С.Д. Химическая энзимология. М.: Научный мир, 2019. С. 543.
- 2. Berman H.M., Henrick K., Nakamura H. // Nature Structural Biology. 2003. V. 10. № 12. P. 980. https://doi.org/10.1038/nsb1203-980
- 3. Holliday G.L., Andreini C., Fischer J.D. et al. // Nucleic Acids Res. 2012. V. 40. P. D783.https://doi.org/10.1093/nar/gkr799
- 4. Nagano N., Nakayama N., Ikeda K. et al. // Ibid. 2015. V. 43. P. D453.https://doi.org/10.1093/nar/gku946
- 5. Ribeiro A.J.M., Holliday J.L., Furnham N. et al. // Ibid. 2018. V. 46. P. D618.https://doi.org/10.1093/nar/gkx1012
- 6. Furnham N., Holliday G.L., de Beer T.A.P. et al. // Ibid. 2014. V. 42. P. D485.https://doi.org/10.1093/nar/gkt1243
- 7. Warshel A., Levitt M. // J. Mol. Biol. 1976. V. 103. P. 227. https://doi.org/10.1016/0022-2836 (76)90311-9
- 8. Senn H.M., Thiel W. // Angew. Chemie Int. Ed. 2009. V. 48. P. 1198. https://doi.org/10.1002/anie.200802019
- 9. Grigorenko B.L., Kots E.D., Nemukhin A.V. // Org. Biomol. Chem. 2019. V. 17. P. 4879.https://doi.org/10.1039/C9OB00463G
- 10. Khrenova M.G., Grigorenko B.L., Kolomeisky A.B. et al. // J. Phys. Chem. B. 2015. V. 119. № 40. P. 12838.https://doi.org/10.1021/acs.jpcb.5b07238
- 11. Khrenova M.G., Kots E.D., Nemukhin A.V. // Ibid. 2016. V. 120. № 16. P. 3873.https://doi.org/10.1021/acs.jpcb.6b03363
- 12. Docker, Inc. https://www.docker.com, 2019.
- 13. The Linux Foundation. https://kubernetes.io, 2019.
- 14. Brekhov A.T., Mironov V.A., Moskovsky A.A. et al. // J. Phys.: Conf. Ser. 2019. V. 1392. P. 012049.https://doi.org/10.1088/1742-6596/1392/1/012049
- 15. PostgreSQL Global Development Group. https://www.postgresql.org, 2019.
- 16. Latino D.A.R.S., Aires-de-Sousa J. // Chemoinf. and Comput. Chem. Biol. 2011. V. 672. P. 325.https://doi.org/10.1007/978-1-60761-839-3_13
- 17. O’Boyle N.M., Holliday G.L., Almonacid D.E. et al. // J. Mol. Biol. 2007. V. 368. P. 1484.https://doi.org/10.1016/j.jmb.2007.02.065
- 18. Almonacid D.E., Babbitt P.C. // Curr. Opin. Chem. Biol. 2011. V. 15. P. 435.https://doi.org/10.1016/j.cbpa.2011.03.008