RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

CALPHAD Modelling of Ag–Pd–Sn Ternary System

PII
10.31857/S0044453723090145-1
DOI
10.31857/S0044453723090145
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1329-1335
Abstract
CALPHAD modelling of the Ag–Pd–Sn ternary system has been performed. The disordered phases, the melt and the fcc phase were described using the substitutional solution model. Sublattice models were used to describe intermetallic compounds and the ternary phase. The two-sublattice model (Ag,Pd)4(Ag, Sn) used for the ternary phase made it possible to reproduce the inclination of its homogeneity range. The results of the thermodynamic calculation of the Ag–Pd–Sn system are in good agreement with the experimental data on phase equilibria and enthalpies of formation of the liquid. The agreement with the data on the partial Gibbs energy of tin in the liquid is somewhat worse.
Keywords
палладиевые сплавы фазовые равновесия термодинамическое моделирование
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Shin H.-J., Kwon Y.H., Seol H.-J. // J. Mech. Behav. Biomed. Mater. 2020. V. 107. P. 103728. https://doi.org/10.1016/j.jmbbm.2020.103728
  2. 2. Zhang R., Peng M., Ling L. et al. // Chem. Eng. Sci. 2019. V. 199. P. 64–78. https://doi.org/10.1016/j.ces.2019.01.018
  3. 3. Zerdoumi R., Armbrüster M. // ACS Appl. Energy Mater. 2021. V. 4. № 10. P. 11279. https://doi.org/10.1021/acsaem.1c02119
  4. 4. Lee C.Y., Yang S.P., Yang C.H. et al. // Surf. Coat. Technol. 2020. V. 395. P. 125879. https://doi.org/10.1016/j.surfcoat.2020.125879
  5. 5. Sundman B., Lukas H.L., Fries S.G. Computational Thermodynamics: The Calphad Method. New York: Cambridge University Press, 2007. C. 313.
  6. 6. Pavlenko A.S., Ptashkina E.A., Kabanova E.G. et al. // Calphad. 2023. V. 81. P. 102533. https://doi.org/10.1016/j.calphad.2023.102533
  7. 7. Laurie G.H., Pratt. J.N. // J. Chem. Soc., Faraday Trans. 1964. V. 60. P. 1391–1401. https://doi.org/10.1039/TF9646001391
  8. 8. Luef C., Paul A., Flandorfer H. et al. // J. Alloys Compd. 2005. V. 391. P. 67–76. https://doi.org/10.1016/j.jallcom.2004.08.056
  9. 9. Pavlenko A.S., Kabanova E.G., Kuznetsov V.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 13. P. 2691. https://doi.org/10.1134/s0036024420130178
  10. 10. Thermo-Calc Software PURE5/SGTE Pure Element Database. https://thermocalc.com/about-us/methodology/the-calphad-methodology/assessment-of-thermodynamic-data/
  11. 11. Ghosh G., Kantner C., Olson G.B. // J. Phase Equilibria. 1999. V. 20. № 3. 295. https://doi.org/10.1361/105497199770335811
  12. 12. Gierlotka W., Huang Y.C., Chen S.W. // Metall. Mater. Trans. A. 2008. V. 39. № 13. P. 3199. https://doi.org/10.1007/s11661-008-9671-6
  13. 13. Vassilev G., Gandova V., Milcheva N. et al. // Calphad. 2013. V. 43. P. 133. https://doi.org/10.1016/j.calphad.2013.03.003
  14. 14. Cui S., Wang J., You Z. et al. // Intermetallics. 2020. V. 126. P. 106945. https://doi.org/10.1016/j.intermet.2020.106945
  15. 15. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
  16. 16. Toop G.W. // Trans. Metall. Soc. AIME. 1965. V. 233. № 5. P. 850.
  17. 17. Andersson J.-O., Helander T., Höglund L. et al. // Calphad. 2002. V. 26. № 2. P. 273. https://doi.org/10.1016/s0364-5916 (02)00037-8
  18. 18. Pavlenko A.S., Ptashkina E.A., Zhmurko G.P. et al. // Rus. J. Phys. Chem. A. 2023. V. 97. P. 42. https://doi.org/10.1134/S0036024423010235
  19. 19. Pavlenko A.S., Kabanova E.G., Kareva M.A. et al. // Materials. 2023. V. 16. № 4. P. 1690. https://doi.org/10.3390/ma16041690
  20. 20. Kuznetsov V.N., Kabanova E.G. // Calphad. 2015. V. 100. № 51. P. 346. https://doi.org/10.1016/j.calphad.2015.01.011
  21. 21. Cui S., Wang J., Jung I.H. // Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 2022. V. 53. № 12. P. 4296. https://doi.org/10.1007/s11661-022-06825-9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library