RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Quantum-Chemical Simulation of 13C NMR Chemical Shifts of Fullerene C60 Exo-Derivatives

PII
10.31857/S004445372309025X-1
DOI
10.31857/S004445372309025X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1272-1277
Abstract
The 13C NMR chemical shifts of fullerene C60 exo-derivatives were calculated using quantum chemical hybrid functionals combined with Pople, Dunning correlation-consistent, and def2-TZVP split valence basis sets taking into account the solvent effect (polarizable continuum model). A relationship between theoretical and experimental 13C NMR chemical shifts (CSs) is assessed quantitatively to select a functional/basis set combination. It is found that the CAM-B3LYP/6-31G and M06L/6-31G combinations have the best convergence with experimental data in modeling the 13С NMR CSs of sp3 fullerene carbon atoms in С60 derivatives, whereas X3LYP/6-31G and CAM-B3LYP/6-31G(d) in modeling the 13С NMR CSs of their sp2 fullerene carbon atoms.
Keywords
фуллерен С<sub>60</sub> ЯМР теория функционала плотности базисный набор средняя ошибка
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Hauke F., Chen Z.-F., Hirsch A. // Polish J. Chem. 2007. V. 81. № 5–6. P. 973.
  2. 2. Fileti E.E., Rivelino R. // Chem. Phys. Lett. 2009. V. 467. № 4–6. P. 339.
  3. 3. Liu T., Misquitta A.J., Abrahams I. et al. // Carbon. 2021. V. 173. № P. 891.
  4. 4. Kaminský J., Buděšínský M., Taubert S. et al. // Phys. Chem. Chem. Phys. 2013. V. 15. № 23. P. 9223.
  5. 5. Sun G., Kertesz M. // J. Phys. Chem. A. 2000. V. 104. № 31. P. 7398.
  6. 6. Sun G., Kertesz M. // Ibid. 2001. V. 105. № 22. P. 5468.
  7. 7. Sun G., Kertesz M. // Chem. Phys. 2002. V. 276. № 2. P. 107.
  8. 8. Tulyabaev A.R., Khalilov L.M. // Comput. Theor. Chem. 2011. V. 976. № 1–3. P. 12.
  9. 9. Tulyabaev A.R., Kiryanov I.I., Samigullin I.S. et al. // Int. J. Quantum Chem. 2017. V. 117. № 1. P. 7.
  10. 10. Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 09. 2009, Gaussian, Inc.: Wallingford, CT, USA.
  11. 11. Meier M.S., Spielmann H.P., Bergosh R.G. et al. // J. Am. Chem. Soc. 2002. V. 124. № 27. P. 8090.
  12. 12. Meier M.S., Spielmann H.P., Bergosh R.G. et al. // J. Org. Chem. 2003. V. 68. № 20. P. 7867.
  13. 13. Djojo F., Herzog A., Lamparth I. et al. // Chem. Eur. J. 1996. V. 2. № 12. P. 1537.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library