RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Using Immobilized Hybrid Composites Based on Mixed Polyoxometalates As Catalysts for the Oxidation of Heteroatomic Compounds

PII
10.31857/S0044453723090273-1
DOI
10.31857/S0044453723090273
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1239-1247
Abstract
A set of silica gel-immobilized compounds is synthesized that consists of ethylimidazole cations and anions of phosphotungstic acid (lacunar (PW11) or mixed (PW11M), where M = Zn, Ni, Cu, Co, Mn). The composition and textural characteristics of the compounds are determined by physicochemical means (IR spectroscopy, XPS, SEM/EDX, adsorption). The synthesized heterogeneous composites are active in the oxidation of sulfur- and nitrogen-containing components of petroleum feedstocks with hydrogen peroxide. A comparative analysis is performed of the samples’ catalytic properties in the oxidation of both individual substrates (thiophene, dibenzothiophene, methyl phenyl sulfide, pyridine) and their mixtures.
Keywords
окислительная десульфуризация окислительное деазотирование полиоксометаллаты иммобилизованные катализаторы
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Tanimu A., Alhooshani K. // Energy Fuels. 2019. V. 33. № 4. P. 2810.
  2. 2. Shafi R., Hutchings G.J. // Catal. Today. 2000. V. 59. P. 423.
  3. 3. Houda S., Lancelot C., Blanchard P. et al. // Catalysts. 2018. V. 8. № 9. P. 344.
  4. 4. Shafiq I., Shafique S., Akhter P. et al. // J. Clean. Prod. 2021. V. 294. P. 2.
  5. 5. Есева Е.А., Акопян А.В., Анисимов А.В. и др. // Нефтехимия. 2020. Т. 60. № 5. С. 586.
  6. 6. Rajendran A., Cui T., Fan H. et al. // J. Mater. Chem. A. 2020. V. 8. № 5. P. 2246.
  7. 7. Liu F., Yu J., Qazi A.B. et al. // Environ. Sci. Technol. 2021. V. 55. № 3. P. 1419.
  8. 8. Ионные жидкости: теория и практика (Проблемы химии растворов). Отв. ред. А.Ю. Цивадзе. Иваново: Ивановский издательский дом, 2019. С. 672.
  9. 9. Yang L., Franco V., Mock P. et al. // Environ. Sci. Technol. 2015. 49. P. 14409.
  10. 10. Aghbolagh Z.S., Khorrami M.R.K., Rahmatyan M.S. // J. Iran Chem. Soc. 2022. V. 19. P. 219.
  11. 11. Mello P. de A., Nunes M.A.G., Bizzi C.A. et al. Evaluation of Ultrasound Systems for Sulphur and Nitrogen Removal form Diesel Fuels by Oxidative Treatment, in: 13th Meet. Eur. Soc. Sonochemistry. 2012. P. 148.
  12. 12. Ali-Zade A.G., Buryak A.K., Zelikman V.M. et al. // New J. Chem. 2020. V. 4. P. 6402.
  13. 13. Bryzhin A.A., Gantman M.G., Buryak A.K. et al. // Appl. Catal. B: Environ. 2019. T. 257. P. 117938.
  14. 14. Тарханова И.Г., Вержичинская С.В., Буряк А.К. и др. // Кинетика и катализ. 2017. Т. 58. № 4. С. 384.
  15. 15. Choi J.H., Kim J.K., Park D.R., Kang T.H. // J. Mol. Catal. A: Chem. 2013. V. 371. P. 111.
  16. 16. Nogueira L.S., Ribeiro S., Granadeiro C.M. et al. // Dalton Trans. 2014. V. 43. P. 9518.
  17. 17. Patel A., Narkhede N., Singh S. et al. // Catal. Rev. Sci. Eng. 2016. V. 58 (3). P. 337.
  18. 18. Li J., Yang Zh., Li S. et al. // J. Ind. Eng. Chem. 2020. V. 82. P. 1.
  19. 19. Xu Y., Ma W.-W., Dolo A. et al. // RSC Adv. 2016. V. 6. P. 66841.
  20. 20. Ismagilov Z., Yashnik S., Kerzhentsev M. et al. // Catal. Rev. Sci. Eng. 2011. V. 53. № 3. P. 199.
  21. 21. Tarkhanova I.G., Zelikman V.M., Gantman M.G. //Appl. Catal. A. 2014. V. 470. P. 81.
  22. 22. Jonnevijlle F., Tourné C.M., Tourné G.F. // Inorg. Chem. 1982. V. 21. P. 2742.
  23. 23. Jalil P.A., Faiz M., Tabet N. et al. // J. Catal. 2003. V. 217. № 2. P. 292.
  24. 24. Li J., Luo L., Tan W. et al. // Environ. Sci. Pollut. Res. 2019. V. 26. № 33. P. 34248.
  25. 25. Imran M., Zhou X., Ullah N. et al. // Chemistry Select. 2017. V. 2. № 27. P. 8625.
  26. 26. Fiorio J.L., Braga A.H., Guedes C.L.B. et al. // ACS Sustain. Chem. Eng. 2019. V. 7. № 19. P. 15874.
  27. 27. García-López E.I., Marcì G., Krivtsov I. et al. // J. Phys. Chem. C. 2019. V. 123. № 32. P. 19513.
  28. 28. Hernández-Cortez J.G., Manríquez M., Lartundo-Rojas L. et al. // Catal. Today. 2014. V. 220–222. P. 32.
  29. 29. Molina J., Fernández J., del Río A.I. et al. // Appl. Surf. Sci. 2011. V. 257. № 23. P. 10056.
  30. 30. Zatsepin D.A., Mack P., Wright A.E. et al. // Phys. Status Solidi A. 2011. V. 208. № 7. P. 1658.
  31. 31. Alam A.U., Howlader M.M.R., Deen M.J. // ECS J. Solid State Sci. Technol. 2013. V. 2. № 12. P. 515.
  32. 32. Konga L., Lia G., Wang X. // Catal. Lett. 2004. V. 92b. № 3. P. 163.
  33. 33. Максимов А.Л., Нехаев А.И. // Нефтехимия. 2020. Т. 60. № 2. С. 172.
  34. 34. Брыжин А.А., Руднев В.С., Лукиянчук И.В. и др. // Кинетика и катализ. 2020. Т. 61. № 2. С. 262.
  35. 35. Ростовщикова Т.Н., Локтева Е.С., Шилина М.И. и др. // Журн. физ. химии. 2021. Т. 95. № 3. С. 348.
  36. 36. Pyridine: A Useful Ligand in Transition Metal Complexes, Edited by P.P. Pandey, 2018. P. 84.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library