RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Synthesis of Graphdiynes, Morphological Study, and Comparative Analysis of the Hydrogen Adsorption Properties of Graphenes and Graphdiynes

PII
10.31857/S0044453723100229-1
DOI
10.31857/S0044453723100229
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 10
Pages
1457-1463
Abstract
Graphdiynes (GDYs) are two-dimensional carbon nanostructures containing sp- and sp2-hybridized carbon atoms that form conjugated bonds in the linear chains connecting six-membered carbon rings. The results of scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy showed that GDYs have a uniform surface and contain conjugated –С≡С–С≡С bonds. The hydrogen-adsorption capacity of GDYs was studied, and a comparative analysis of hydrogen adsorption in GDYs, graphenes, graphene nanotubes, and graphene structures formed on zeolites was performed. The substrate on which the carbon nanostructure is formed was shown to have a significant effect on the adsorption capacity of the latter. The possibility and prospects for the synthesis of graphenes on catalysts to increase their efficiency in hydrogenation processes are considered.
Keywords
графдиновые наноструктуры синтез наноразмерных графдинов (ГД) исследование их морфологии строение графдина ацетиленовые связи в ГД адсорбция водорода в углеродных наноструктурах влияние морфологии и подложки
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Balaban A.T., Rentia C.C., Ciupitu E. // Rev. Roum. Chim. 1968. V. 13. P. 231.
  2. 2. Baughman R., Eckhardt H., Kertesz M. // J. Chem. Phys. 1987. V. 87. № 11. P. 6687.
  3. 3. Ivanovskii A.L. // Prog. Solid State Chem. 2013. V. 41. № 1. P. 1.
  4. 4. Wan W.B., Brand S.C., Pak J.J. et al. // Chem. A Eur. J. 2000. V. 6. № 11. P. 2044.
  5. 5. Li G.X., Li Y.L., Liu H.B. et al. // Chem. Commun. 2010. V. 46. P. 3.
  6. 6. Li G., Li Y., Qian X. et al. // J. Phys. Chem. C. 2011. V. 115. P. 2611.
  7. 7. Zhou J., Gao X., Liu R. et al. // J. Am. Chem. Soc. 2015. V. 137. № 24. P. 7596.
  8. 8. Yang N., Liu Y., Wen H. et al. // Nano. 2013. V. 7. № 2. P. 1504.
  9. 9. Huang C., Zhang S., Liu H. et al. // Nano Energy. 2015. V. 11. P. 481.
  10. 10. Kuang C., Tang G., Jiu T. et al. // Nano Lett. 2015. V. 15. № 4. P. 2756.
  11. 11. Gao X., Zhou J., Du R. et al. // Adv. Mater. 2015. https://doi.org/10.1002/adma.201504407
  12. 12. Li J., Xu J., Xie Z. et al. // Adv. Mater. 2018. V. 30. P. 1800548.
  13. 13. Si H-Y., Mao C-J., Zhou J-Y. et al. // Carbon. 2018. V. 132. P. 598.
  14. 14. Yao Y., Jin Z., Chen Y. et al. // Ibid. 2018. V. 129. P. 228.
  15. 15. Shekar S.C., Swath R.S. // Ibid. 2018. V. 126. P. 489.
  16. 16. Li C., Lu X., Han Y. et al. // Nano Research. 2018. V. 11. № 3. P. 1714.
  17. 17. Pan Y., Wang Y., Wang L. et al. // Nanoscale. 2015. V. 7. P. 2116.
  18. 18. Kan X., Ban Y., Wu C. et al. // ACS Appl. Mater. & Interfaces. 2018. V. 10. № 1. P. 53.
  19. 19. Mortazavi B., Makaremi M., Shahrokhi M. et al. // Carbon. 2018. V. 137. P. 57.
  20. 20. Dong Y., Zhao Y., Chen Y. et al. // J. of Materials Sci. 2018. V. 53. № 12. P. 8921.
  21. 21. Huoliang Gu. et al. // J. Am. Chem. Soc. 2021. V. 143. № 23. P. 8679.
  22. 22. Yuncheng Du. et al. // Acc. Chem. Res. 2020. V. 53. № 2. P. 459.
  23. 23. Yang Z. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
  24. 24. Zuo Z., Li Y. // Joule. 2019. V. 3. P. 899.
  25. 25. Hui L., Xue Y., Yu H. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 10677.
  26. 26. Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
  27. 27. Yin C., Li J.Q., Li T.R. et al. // Adv. Funct. Mater. 2020. V. 30. https://doi.org/. 202001396.https://doi.org/10.1002/adfm
  28. 28. Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
  29. 29. Yan H., Yu P., Han G. et al. // Angew. Chem. Int. Ed. Engl. 2019. V. 58. P. 746.
  30. 30. Zhou J.Y., Xie Z.Q., Liu R. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 2632.
  31. 31. Lv J.X., Zhang Z.M. Wang J. et al. // WACS Appl. Mater. Interfaces. 2019. V. 32.
  32. 32. Zuo Z., Shang H., Chen Y. et al. // Chem. Commun. (Camb.). 2017. V. 53. P. 8074.
  33. 33. Li R., Sun H., Zhang Ch. et al. // Carbon. 2022. V. 188. P. 25.
  34. 34. Gao J., Li J., Chen Y. et al. // Nano Energy. 2018. V. 43. P. 192.
  35. 35. Yang Z., Zhang Y., Guo M. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
  36. 36. Солдатов А.П., Бондаренко Г.Н., Сорокина Е.Ю. // Журн. физ. химии. 2015. Т. 89. № 2. С. 306. [Soldatov A.P., Bondarenko G.N., Sorokina E.Yu. // Russ. J. of Phys. Chem. A. 2015. V. 89. № 2. P. 282.]
  37. 37. Tuinstra R., Koenig J.L. // J. Chem. Phys. 1970. V. 53. P. 1126.
  38. 38. Estrade-Szwarckopf H. // Carbon. 2004. V. 42. P. 1713.
  39. 39. Ferrari A.C., Meyer J.C., Scardaci V. et al. // Phys. Rev. Lett. 2006. V. 97. P. 187401.
  40. 40. Солдатов А.П. // Журн. физ. химии. 2020. Т. 94. № 4. С. 483. [Soldatov A.P. // Russ. J. of Phys. Chem. A. 2020. V.94. № 4. P. 663.]
  41. 41. Солдатов А.П., Кириченко А.Н., Татьянин Е.В. // Там же. 2016. Т. 90. № 7. С. 1038.
  42. 42. Солдатов А.П. // Там же. 2019. Т. 93. № 3. С. 398. [Soldatov A.P. // Ibid. 2019. V. 93. №3. P. 494.]
  43. 43. Солдатов А.П. // Там же. 2014. Т. 88. № 7–8. С. 1207. [Soldatov A.P. // Ibid. 2014. V. 88. № 8. P. 1388.]
  44. 44. Солдатов А.П. // Журн. физ. химии. 2017. Т. 91. № 5. С. 897. [Soldatov A.P. // Ibid.2017. V. 91. № 5. P. 931.]
  45. 45. Токабе И.К. Катализаторы каталитические процессы. М.: Наука, 1993.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library