RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Microwave Synthesis of Nickel-Based Catalysts for Selective Hydrogenation of Phenylacetylene to Styrene

PII
10.31857/S004445372310028X-1
DOI
10.31857/S004445372310028X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 10
Pages
1415-1420
Abstract
New nickel-containing catalysts based on the phyllosilicate phase have been obtained by microwave activation for efficient liquid-phase hydrogenation of a number of unsaturated compounds to olefins under relatively mild reaction conditions: T = 100–140°C, pH2 = 1.5 MPa, reaction time 1 h. A comparison of the synthesis methods showed that the best results with 90.1% selectivity of styrene formation at 89.6% conversion of phenylacetylene were obtained on the nickel catalyst prepared by microwave synthesis.
Keywords
Ni/SiO<sub>2</sub> катализаторы селективное гидрирование фенилацетилен микроволновый синтез монометаллические наночастицы
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Yang K., Chen X., Guan J. et al. // Catal. Today. 2015. V. 246. P. 176.
  2. 2. Molnár Á., Sárkány A., Varga V. // Mol. Cat. A. Chem. 2001. V. 173. P. 185.
  3. 3. Bonrath W., Medlock J., Schütz J. et al. // Hydrogenation. 2012. P. 66.
  4. 4. Kluwer A.M., Koblenz T.S., Jonishkeit T. et al. // Am. Chem. Soc. 2005. V. 127. P. 15470.
  5. 5. Rahsepar M., Kim H. // J. Alloys Compd. 2015. V. 649. P. 1323.
  6. 6. Redina E.A., Greish A.A., Mishin I.V. et al. // Catal. Today. 2015. V. 241. P. 246.
  7. 7. Beletskaya I.P., Kustov L.M. // Russ. Chem. Rev. 2010. V. 79 (6). P. 441.
  8. 8. Sels B.F., Kustov L.M. // Zeolites and Zeolite-like Materials 2016. P. 1.
  9. 9. Manjunatha C., Ashoka S., Hari Krishna R. Chapter 1 – Microwave-assisted Green Synthesis of Inorganic Nanomaterials, Green Sustainable Process for Chemical and Environmental Engineering and Science. 2021. P. 1.
  10. 10. Bian Z., Kawi S. // Catal. Today. 2020. V. 339. P. 3.
  11. 11. Wang M.L., Ban X.Q., Xie L.Q. et al. // ACS Sustain. Chem. Eng. 2019. V. 7. P. 1989.
  12. 12. Yu J., Yang Y.S., Chen L.F. et al. // Appl. Catal. B: Environ. 2020. V. 277. 119273.
  13. 13. Wang Y.L.H. // Chem. Phys. Lett. 2020. V. 757. 137871.
  14. 14. Aguilar-Tapia A., Delannoy L., Loui C. et al. // J. Catal. 2016. V. 344. P. 515.
  15. 15. Narani A., Kannapu H.P.R., Natte K. et al. // Mol. Catal. 2020. V. 497. 111200.
  16. 16. Kirichenko O., Kapustin G., Nissenbaum V. et al. // J. Therm. Anal. Calorim. 2018. V. 134. P. 233.
  17. 17. Kirichenko O., Kapustin G., Nissenbaum V. et al. // J. Therm. Anal. Calorim. 2014. V. 118. P. 749.
  18. 18. H. Liu, H. Wang, J. Shen, Y. Sun and Z. Liu // Applied Catalysis A: General, https://doi.org/10.1016/j.apcata.2007.12.006
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library