ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Физико-химические и каталитические свойства Mo-Zr/ZSM-5 катализаторов дегидроароматизации метана

Код статьи
10.31857/S0044453723110055-1
DOI
10.31857/S0044453723110055
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 97 / Номер выпуска 11
Страницы
1584-1593
Аннотация
Исследовано влияние способа и количества циркония, введенного в катализатор 4Mo/ZSM-5, на его физико-химические и каталитические свойства в процессе неокислительной конверсии метана в ароматические углеводороды (бензол и нафталин). Катализатор был модифицирован цирконием методами пропитки и твердофазного смешения. Полученные цеолитные катализаторы исследованы методами ИК-спектроскопии, рентгенофазового анализа, низкотемпературной адсорбции азота, термопрограммируемой десорбции аммиака, сканирующей и просвечивающей электронной микроскопии, синхронного термического анализа. С повышением концентрации вводимого в катализатор 4Mo/ZSM-5 циркония снижается преимущественно сила и концентрация его сильных кислотных центров, отвечающих за процесс ароматизации метана, независимо от способа модифицирования. Методами сканирующей и просвечивающей электронной микроскопии установлена морфология и размер частиц катализаторов, распределение в них Мо и Zr, а также наличие на их поверхности коксовых отложений. Каталитические испытания и последующий термический анализ образцов показали, что добавка циркония к катализатору 4Mo/ZSM-5 приводит не только к увеличению его каталитической активности, но и стабильности работы за счет снижения скорости коксообразования. Установлено, что наиболее эффективным в процессе дегидроароматизации метана является катализатор 4Mo/ZSM-5, модифицированный 1 мас. % Zr-методом твердофазного синтеза.
Ключевые слова
дегидроароматизация метана металлцеолитные катализаторы цеолит типа ZSM-5 микро-мезопористая структура кислотность конверсия активность
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
5

Библиография

  1. 1. Ma S., Guo X., Zhao L. et al. // J. Energy Chem. 2013. V. 22. P. 1. https://doi.org/10.1016/S2095-4956 (13)60001-7
  2. 2. Wang B., Albarracin-Suazo S., Pagan-Torres Y. et al. // Catal. Today. 2017. V. 285. P. 147. https://doi.org/10.1016/j.cattod.2017.01.023
  3. 3. Ramasubramanian V., Ramsurn H., Price G.L. // J. Energy Chem. 2019. V. 34. P. 20. https://doi.org/10.1016/j.jechem.2018.09.018
  4. 4. Corredor E.C., Chitta P., Deo M.D. // Fuel Process. Technol. 2019. V. 183. P. 55. https://doi.org/10.1016/j.fuproc.2018.05.038
  5. 5. Rahman M., Infantes-Molina A., Boubnov A. et al. // J. Catal. 2019. V. 375. P. 314. https://doi.org/10.1016/j.jcat.2019.06.002
  6. 6. Chen L., Lin L., Xu Z. et al. // J. Catal. 1995. V. 157. P. 190. https://doi.org/10.1006/jcat.1995.1279
  7. 7. Kiani D., Sourav S., Tang Y. et al. // Chem. Soc. Rev. 2021. V. 50. P. 1251. https://doi.org/10.1039/D0CS01016B
  8. 8. Menon U., Rahman M., Khatib S.J. // Appl. Catal. A, General. 2020. V. 608. P. 117870. https://doi.org/10.1016/j.apcata.2020.117870
  9. 9. Ogawa Y., Xu Y., Zhang Z. et al. // Resources Chem. Mater. 2022. V. 1. P. 80. https://doi.org/10.1016/j.recm.2022.01.004
  10. 10. Kosinov N., Hensen E.J.M. // Adv. Mater. 2020. V. 32. P. 2002565. https://doi.org/10.1002/adma.202002565
  11. 11. Chen L., Lin L., Xu Z. et al. // Catal. Lett. 1996. V. 39. P. 169. https://doi.org/10.1007/BF00805578
  12. 12. Wang L., Xu Y., Wong S. et al. // Appl. Catal. A: 1997. V. 152. P. 173. https://doi.org/10.1016/S0926-860X (96)00366-3
  13. 13. Liu S., Dong Q., Ohnishi R. et al. // Chem. Commun. 1997. № 15. P. 1445. https://doi.org/10.1039/A702731A
  14. 14. Wang Q., Lin W. // J. Nat. Gas Chem. 2004. V. 13. P. 91. https://doi.org/10.1109/TIP.2004.823822
  15. 15. Sridhar A., Rahman M., Infantes-Molina A. et al. // Appl. Catal. A, General. 2020. V. 589. P. 117247. https://doi.org/10.1016/j.apcata.2019.117247
  16. 16. Восмерикова Л.Н., Волынкина А.Н., Восмериков А.В. и др. // НефтеГазоХимия. 2015. № 1. С. 37. [Vosmerikova L.N., Volynkina A.N., Vosmerikov A.V. et al. // Oil & Gas Chemistry. 2015. No. 1. P. 37 (In Russ)]
  17. 17. Korobitsyna L.L., Zharnov K.N., Stepanov A.A. et al. // Journal of Siberian Federal University. Chemistry. 2019. V. 12. P. 118. https://doi.org/10.17516/1998-2836-0111
  18. 18. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УрО РАН, 1988. 200 c. [Gusev A.I. Nano-crystalline materials: methods of obtaining and properties. Yekaterinburg: IPM UrO RAN, 1998. 200 p. (In Russ.)]
  19. 19. Shukla D., Pandya V. // J. Chem. Tech. Biotechnol. 1983. V. 44. P. 147.
  20. 20. Vosmerikov A.V., Echevskii G.V., Korobitsyna L.L. et al. // Kinetics and Catalysis. 2005. V. 46. № 5. P. 724. https://doi.org/10.1007/s10975-005-0128-2
  21. 21. Zaikovskii V.I., Vosmerikov A.V., Anufrienko V.F. et al. // Doklady Physical Chemistry. 2005. V. 404. P. 201. https://doi.org/10.1007/s10634-005-0060-1
  22. 22. Denardin F.G., Perez-Lopez O.W. // Micropor. Mesopor. Mater. 2020. V. 295. P. 109961. https://doi.org/10.1016/j.micromeso.2019.109961
  23. 23. Stepanov A.A., Korobitsyna L.L., Vosmerikov A.V. // Catalysis in Industry. 2022. V. 14. P. 11. https://doi.org/10.1134/S2070050422010093
  24. 24. Song Y., Zhang Q., Xu Y. et al. // Appl. Catal. A: General. 2017. V. 530. P. 12. https://doi.org/10.1016/j.apcata.2016.11.016
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека