RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Finsler–Lagrange Kinetic Model of the Structurization of a Langmuir Monolayer

PII
10.31857/S0044453723110183-1
DOI
10.31857/S0044453723110183
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 11
Pages
1627-1637
Abstract
A model is proposed for the synthesis of nanocyclic iron coordination complexes on the surface of an aqueous solution of ferric iron salts during a two-dimensional solid (S)–liquid expanded (L') phase transition of first order. Electrocapillary effects in the nucleation kinetics for such Langmuir monolayers are studied in the context of the Finsler–Lagrangian formalism. It is shown that under conditions of rapid compression, an additional local minimum appears in the surface tension potential of the monolayer. This minimum causes supersaturation of the phase and the formation of nuclei (domains) of the crystalline phase with sizes considerably exceeding the critical one, resulting in a plateau on the compression isotherm and the formation of a multidomain monolayer structure. It is established that since the effective charge of hydrated ferrous iron complexes is greater than that of ferric iron complexes, electrocapillary phenomena at the phase boundary lead to the formation of domains of high-spin octahedral ferrous iron complexes with dithionylpyrrole oligomers.
Keywords
ленгмюровский монослой фазовый переход 1-го рода финслер-лагранжева геометрическая модель высокоспиновый октаэдрический координационный комплекс железа
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Rojewska M., Smułek W., Kaczorek E., Prochaska K. // Membranes. 2021. V. 11. P. 707.
  2. 2. Gavande V., Kim G., Kim B. et al. // Molecular Crystals and Liquid Crystals. 2022. V. 742. P. 133. https://doi.org/10.1080/15421406.2022.2038457
  3. 3. Grushevskaya H.V., Lipnevich I.V., Orekhovskaya T.I. // J. Modern Physics. 2013. V. 4. P. 7. https://doi.org/10.4236/jmp.2013.412A3002
  4. 4. Selector S., Fedorova O., Lukovskaya E. et al. // J. Phys. Chem. B. 2012. V. 116. № 5. P. 1482. https://doi.org/10.1021/jp2074122
  5. 5. Möhwald H., Brezesinski G. // Langmuir. 2016. V. 32. P. 10445. https://doi.org/10.1021/acs.langmuir.6b02518
  6. 6. Блинов Л.М. // УФН. 1988. Т. 155. С. 443.
  7. 7. Kundu S., Datta A. // Colloids and Surfaces A. 2006. V. 289. P. 250. https://doi.org/10.1016/j.colsurfa.2006.07.001
  8. 8. Wang J., Liu B. // Sci. Technol. Adv. Mater. 2019. V. 20. P. 992. https://doi.org/10.1080/14686996.2019.1669220
  9. 9. Бразовский С.А., Дзялошинский И.Е., Муратов А.Р. // ЖЭТФ. 1987. Т. 93. № 3. С. 1110 / Brazovskii S.A., Dzyaloshinskii I.E., Muratov A.R. // Sov. Phys. JETP. 1987. V. 66. Iss. 3. P. 625.
  10. 10. Кац Е.И., Лебедев В.В., Муратов А.Р. // Физика твердого тела. 1989. Т. 31. № 4. С. 189.
  11. 11. Karaborni S., Toxvaerd S. // J. Chem. Phys. 1992. V. 96. P. 5505.
  12. 12. Kaganer V.M., Mӧhwald H., Dutta P. // Rev. Mod. Phys. 1999. V. 71. Iss. 3. P. 779.
  13. 13. O’Connor E. Discontinuous molecular dynamics studies of model Langmuir monolayers: Thesis. University of Prince Edward Island, Canada, 2006. 110 p.
  14. 14. Angerman H.Ja., Johner A., Semenov A.N. // Macromolecules. 2006. V. 39. Iss. 18. P. 6210.
  15. 15. Arora A., Qin J., Morse D.C. et al. // Ibid. 2016. V. 49. Iss. 13. P. 4675. https://doi.org/10.1021/acs.macromol.6b00107
  16. 16. Erukhimovich I., Kriksin Yu. // J. Chem. Phys. 2019. V. 150. P. 224701. https://doi.org/10.1063/1.5108642
  17. 17. Slezov V.V. Kinetics of first-order phase transitions. Weinheim: Wiley-VCH, 2009. 415 p.
  18. 18. Becker R., Doring W. // Annalen der Physik. 1935. V. 416. Iss. 8. P. 719. https://doi.org/10.1002/andp.19354160806
  19. 19. Vollhardt D., Fainerman V.B. // J. Phys. Chem. B. 2002. V. 106. P. 345. https://doi.org/10.1021/jp012798u
  20. 20. Kmetko J., Datta A., Evmenenko G., Dutta P. // Ibid. 2001. V. 105. P. 10818.
  21. 21. Grushevskaya H.V., Krylov G.G., Krylova N.G., Lipnevich I.V. // IOP J. of Physics: CS. 2015. V. 643. P. 012015. https://doi.org/10.1088/1742-6596/643/1/012015
  22. 22. Nandi N., Vollhardt D. // J. Phys. Chem. B. 2004. V. 108. Iss. 49. P. 18793. https://doi.org/10.1021/jp0461697
  23. 23. Ruckenstein E., Li B. // Ibid.1998. V. 102. Iss. 6. P. 981. https://doi.org/10.1021/jp972748i
  24. 24. Cai Z., Rice S.A. // Faraday Discuss. Chem. SOC. 1990. V. 89. P. 211. https://doi.org/10.1039/DC9908900211
  25. 25. Gellert F., Ahrens H., Wulff H., Helm C.A. // Membranes. 2022. V. 12. P. 698. https://doi.org/10.3390/membranes12070698
  26. 26. Balan V., Grushevskaya H., Krylova N., Neagu M. // Int. J. Nonlin. Phen. in Complex Sys. 2016. V. 19. № 3. P. 223.
  27. 27. Крылова Н.Г. // Веснік Брэсцкага ўніверсітэта. 2017. № 2. С. 27.
  28. 28. Крылова Н.Г., Грушевская Г.В., Редьков В.М. // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2017. № 3. С. 66.
  29. 29. Balan V., Grushevskaya H.V., Krylova N.G. et al. // Applied Sciences. 2019. V. 21. P. 11.
  30. 30. Balan V., Grushevskaya H.V., Krylova N.G., Krylov G.G. // Ibid. 2020. V. 22. P. 94.
  31. 31. Antonelli P.L., Miron R. (Eds.) Lagrange and Finsler geometry: Application to physics and biology. Springer, 1996. 328 p.
  32. 32. Balan V.  Jet single-time Lagrange geometry and its application / V. Balan, M. Neagu – Wiley, 2011. 194 p.
  33. 33. Атанасиу Г., Балан В., Брынзей Н., Рахула М. Дифференциальная геометрия второго порядка и приложения: Теория Мирона–Атанасиу. М.: Книжный дом “ЛИБРОКОМ”, 2010. 256 с.
  34. 34. Bao D., Chern S.S., Shen Z. An introduction to Riemann-Finsler geometry. Berlin: Springer, 2000. 431 p.
  35. 35. Грушевская Г.В., Бабенко А.С., Крылова Н.Г. и др. // Наука и инновации. 2019. № 4. С. 23.
  36. 36. Egorova V.P., Grushevskaya H.V., Babenka A.S. et al. // Semiconductors. 2020. V. 54. P. 1873. https://doi.org/10.1134/S1063782620140092
  37. 37. Min J., Peng B., Wen Y. et al. // Synthetic Metals. 2011. V. 161. P. 1832. https://doi.org/10.1016/j.synthmet.2011.06.015
  38. 38. Смирнов В.И., Афанасьев А.В., Простакишин И.С., Беленький Л.И. // Химия гетероциклических соединений. 2013. № 3. С. 416.
  39. 39. Wynberg H., Metselaar J. // Synthetic Communications. 1984. V. 14. Iss. 1. P. 1.
  40. 40. Kel’in A., Kulinkovich O. // Folia pharm. Univ. Carol. (supplementum). 1995. V. 18. P. 96.
  41. 41. Bhande R.S., Landge Y.A., Giri P.A. // J. Chem. Pharm. Res. 2012. V. 4. № 6. P. 3297.
  42. 42. Касюк Ю.В., Ларкин А.В., Федотова Ю.А. // Вестн. БГУ. Сер. 1. 2011. № 2. С. 52.
  43. 43. Крефт В.-Д., Кремп Д., Эбелинг В., Рёпке Г. Квантовая статистика систем заряженных частиц. М.: Мир, 1988. 405 с.
  44. 44. Helm C.A., Moehwald H. J. Phys. Chem. 1988. V. 92. P. 1262. https://doi.org/10.1021/j100316a050
  45. 45. Shih M.C., Bohanon T.M., Mikrut J.M. et al. J. Chem. Phys. 1992. V. 96. № 2. P. 1556. https://doi.org/10.1063/1.462139
  46. 46. Gaines G.L., Jr. Insoluble Monolayers at Liquid–Gas Interfaces. New York: Interscience, 1966. 386 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library