- PII
- 10.31857/S0044453723110262-1
- DOI
- 10.31857/S0044453723110262
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 11
- Pages
- 1655-1659
- Abstract
- The authors describe a way of detecting nitro and amino compounds using a mass spectrometer with laser desorption/ionization. This allows analysis of nitro- and amino compounds from a metal surface without sample preparation at levels of up to 5 ng/cm2 relative to paracetamol. Sensitivity is at the level of modern means of analysis, and the procedure is simple and fast. It is also universal and can be modified to search for other nitro- and amino compounds. Pointwise quantitative analysis can be done using an external standard. The dynamic range is 1.5–2 orders of magnitude. The technique can be used to analyze metal surfaces for nitro-paint residues and traces of explosive compounds.
- Keywords
- нитрофенол динитрофенол масс-спектрометрия поверхностной лазерной десорбции/ионизации парацетамол 2-метилпирролидон масс-спектрометрическая визуализация
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Caulkins J.P., Gould A., Pardo B. et al. // Annu. Rev. Criminol. 2021. V. 4. P. 353–375.
- 2. Galante N., Franceschetti L., Del Sordo S. // Forensic Sci. Med. Pathol. 2021. V. 17. № 3. P. 437–448.
- 3. Lehmann E.L., Arruda M.A.Z. // Anal. Chim. Acta. 2019. V. 1063. P. 9–17.
- 4. Cunha R.L., Oliveira C.D.S.L., de Oliveira A.L. et al. // Microchem. J. 2021. V. 163. P. 105895.
- 5. Suppajariyawat P., Gonzalez-Rodriguez J. // Sci. Justice. 2021. V. 61. № 6. P. 697–703.
- 6. Ryan D.J., Spraggins J.M., Caprioli R.M. et al. // Curr. Opin. Chem. Biol. 2019. V. 48. P. 64–72.
- 7. Morisasa M., Sato T., Kimura K. et al. // Foods. 2019. V. 8. № 12. P. 633.
- 8. Spraggins J.M., Djambazova K.V., Rivera E.S. et al. // Anal. Chem. 2019. V. 91. № 22. P. 14552–14560.
- 9. Lee P.Y., Yeoh Y., Omar N. et al. // Crit. Rev. Clin. Lab. Sci. 2021. V. 58. № 7. P. 513–529.
- 10. Basu S.S., Regan M.S., Randall E.C. et al. // NPJ Precis. Oncol. 2019. V. 3 № 1. P. 17.
- 11. Iartsev S.D., Matyushin D.D., Pytskii I.S. et al. // Surf. Innov. 2018. V. 6. № 4–5. P. 244–249.
- 12. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2022. V. 96. № 5. P. 1070–1076.
- 13. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1227–1237.
- 14. Hoong Y.B., Pizzi A., Chuah L.A. Harun J. // Int. J. Adhes. Adhes. 2015. V. 63. P. 117–123.
- 15. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2319–2324.
- 16. Wang X., Liu Y., Wang Q. et al. // Spectrochim. 2021. V. 244. P. 118876.
- 17. Wang J., Qiu C., Mu X. et al. // Talanta. 2020. V. 210. P. 120631.