- PII
- 10.31857/S0044453723110365-1
- DOI
- 10.31857/S0044453723110365
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 11
- Pages
- 1647-1654
- Abstract
- A new and highly efficient way of obtaining finely dispersed LiCoPO4 powder is developed with a given morphology from ammonium substituted precursor NH4CoPO4⋅H2O in a lithium nitrate melt. It is shown that the morphology of the obtained product is determined by the morphology of the used precursor and depends on the physicochemical conditions of its preparation. The obtained LiCoPO4 and its precursors are characterized by means of XRD, SEM, and BET. Electrochemical tests show the resulting powder is electrochemically active. Cathode material based on the obtained LiCoPO4 shows a high specific discharge capacity of 110 mA h/g at a current density corresponding to a charge/discharge rate of 1C, due to the high dispersion and lamellar morphology of the particles of the synthesized powder. The proposed procedure is characterized by the speed of obtaining the target product. It does not require the use of expensive equipment or additional stages of high-temperature crystallization and grinding, and can be scaled up to industrial use.
- Keywords
- катодные материалы двойные фосфаты синтез электрохимические свойства
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 9
References
- 1. Dixit A. // SMC Bulletin. 2019. V. 10. № 3. P. 151.
- 2. Junxiang L., Jiaqi W., Youxuan N. et al. // Materials Today. 2021. № 43. P. 132.
- 3. Jiangtao H., Weiyuan H., Luyi X. et al. // Nanoscale. 2020. V. 12. № 28. P. 15036.
- 4. Клюев В.В., Волынский В.В., Тюгаев В.Н. и др. Катодный активный материал на основе литированного фосфата железа с модифицирующей добавкой марганца: Патент RU 2453950 C1 // Б.И. 2012. № 17. С. 9.
- 5. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S. et al. // J. of Alloys and Compounds. 2021. № 882. P. 160.
- 6. Kanungo S., Bhattacharjee A., Bahadursha N. et al. // Nanomaterials. 2022. № 12. P. 32.
- 7. Kraytsberg A., Ein-Eli Y. // Adv. Energy Mater. 2012. № 2. P. 922.
- 8. Chen S.-P., Lv D., Chen J. et al. // Energy & Fuels. 2022. V. 36. № 3. P. 1232.
- 9. Jugović D., Uskoković D. // J. of Power Sources. 2009. № 190. P. 538.
- 10. Kirillov S.A., Romanova I.V., Lisnycha T.V. et al. // Electrochimica Acta. 2018. V. 286. P. 163.
- 11. Karafiludis S., Buzanich A., Heinekamp C. et al. // Nanoscale. 2023. P. 1.
- 12. Karafiludis S., Buzanich A.G., Kochovski Z. et al. // Crystal Growth & Design. 2022. V. 22. № 7. P. 4305.
- 13. Choi D., Li X., Henderson W.A. et al. // Heliyon. 2016. V. 2. № 2. P. 000.
- 14. Pinson M.B., Bazant M.Z. // J. Electrochem. Soc. 2013. V. 160. № 2. P. 243.
- 15. Markevich E., Sharabi R., Gottlieb H. et al. // Electrochemistry Communications. 2012. № 15. P. 22.
- 16. Truong Q., Devaraju M.R., Ganbe Y. et al. // Scientific reports. 2014. № 4. P. 39.
- 17. Wu X., Meledina M., Tempel H. et al. // J. of Power Sources. 2020. № 450. P. 227.