RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

New Approaches to Synthesizing Nanostructured Electrode Materials Based on Double Lithium and Cobalt Phosphates in Salt Melts

PII
10.31857/S0044453723110365-1
DOI
10.31857/S0044453723110365
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 11
Pages
1647-1654
Abstract
A new and highly efficient way of obtaining finely dispersed LiCoPO4 powder is developed with a given morphology from ammonium substituted precursor NH4CoPO4⋅H2O in a lithium nitrate melt. It is shown that the morphology of the obtained product is determined by the morphology of the used precursor and depends on the physicochemical conditions of its preparation. The obtained LiCoPO4 and its precursors are characterized by means of XRD, SEM, and BET. Electrochemical tests show the resulting powder is electrochemically active. Cathode material based on the obtained LiCoPO4 shows a high specific discharge capacity of 110 mA h/g at a current density corresponding to a charge/discharge rate of 1C, due to the high dispersion and lamellar morphology of the particles of the synthesized powder. The proposed procedure is characterized by the speed of obtaining the target product. It does not require the use of expensive equipment or additional stages of high-temperature crystallization and grinding, and can be scaled up to industrial use.
Keywords
катодные материалы двойные фосфаты синтез электрохимические свойства
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Dixit A. // SMC Bulletin. 2019. V. 10. № 3. P. 151.
  2. 2. Junxiang L., Jiaqi W., Youxuan N. et al. // Materials Today. 2021. № 43. P. 132.
  3. 3. Jiangtao H., Weiyuan H., Luyi X. et al. // Nanoscale. 2020. V. 12. № 28. P. 15036.
  4. 4. Клюев В.В., Волынский В.В., Тюгаев В.Н. и др. Катодный активный материал на основе литированного фосфата железа с модифицирующей добавкой марганца: Патент RU 2453950 C1 // Б.И. 2012. № 17. С. 9.
  5. 5. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S. et al. // J. of Alloys and Compounds. 2021. № 882. P. 160.
  6. 6. Kanungo S., Bhattacharjee A., Bahadursha N. et al. // Nanomaterials. 2022. № 12. P. 32.
  7. 7. Kraytsberg A., Ein-Eli Y. // Adv. Energy Mater. 2012. № 2. P. 922.
  8. 8. Chen S.-P., Lv D., Chen J. et al. // Energy & Fuels. 2022. V. 36. № 3. P. 1232.
  9. 9. Jugović D., Uskoković D. // J. of Power Sources. 2009. № 190. P. 538.
  10. 10. Kirillov S.A., Romanova I.V., Lisnycha T.V. et al. // Electrochimica Acta. 2018. V. 286. P. 163.
  11. 11. Karafiludis S., Buzanich A., Heinekamp C. et al. // Nanoscale. 2023. P. 1.
  12. 12. Karafiludis S., Buzanich A.G., Kochovski Z. et al. // Crystal Growth & Design. 2022. V. 22. № 7. P. 4305.
  13. 13. Choi D., Li X., Henderson W.A. et al. // Heliyon. 2016. V. 2. № 2. P. 000.
  14. 14. Pinson M.B., Bazant M.Z. // J. Electrochem. Soc. 2013. V. 160. № 2. P. 243.
  15. 15. Markevich E., Sharabi R., Gottlieb H. et al. // Electrochemistry Communications. 2012. № 15. P. 22.
  16. 16. Truong Q., Devaraju M.R., Ganbe Y. et al. // Scientific reports. 2014. № 4. P. 39.
  17. 17. Wu X., Meledina M., Tempel H. et al. // J. of Power Sources. 2020. № 450. P. 227.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library