- Код статьи
- 10.31857/S0044453723120051-1
- DOI
- 10.31857/S0044453723120051
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 97 / Номер выпуска 12
- Страницы
- 1812-1824
- Аннотация
- Изучена микромицетная биокоррозия электротехнической меди М1Е и стеклотекстолита FR4 с медным покрытием, применяющихся для производства печатных плат. С помощью оптической и электронной микроскопии была исследована структура поверхности прокорродировавших образцов. Методом энергодисперсионной рентгеновской спектроскопии проведен качественный и полуколичественный анализ химических элементов, присутствующих в составе продуктов коррозии после экспозиции образцов на газоне микромицетов. Выполнен рентгенофазовый анализ продуктов биокоррозии меди. Установлено, что на начальном этапе микромицетной коррозии происходит адгезия микроорганизмов на поверхности металла и развитие их колоний. Высказано предположение об участии в биокоррозии меди активных форм кислорода (супероксидного анион-радикала и пероксида водорода) и функционировании системы “нульвалентная медь–пероксид водорода”, которые запускают каскад реакций, ведущих к деструктивному окислению меди. В работе объяснена роль биопленок сообщества микроскопических грибов как основного фактора микологической коррозии меди.
- Ключевые слова
- биокоррозия меди микромицетная коррозия микологическая коррозия биопленка микроскопических грибов микромицетная биопленка адгезия микроорганизмов биоповреждение стеклотекстолит супероксидный анион-радикал пероксид водорода АФК нульвалентная медь (nanoscale zero valent copper nZVC)
- Дата публикации
- 12.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Okorie I.E., Chukwudi N.R. // Zastita Materijala. 2021. V. 62. № 4. P. 333. https://doi.org/10.5937/zasmat2104333O
- 2. Picioreanu C., Loosdrecht M.V. // J. of The Electrochemical Society. 2002. V. 149. № 6. B211–B223. https://doi.org/10.1149/1.1470657
- 3. Rather M.A., Gupta K., Mandal M. // Brazilian J. of Microbiology. 2021. V. 52. № 12. P. 1. https://doi.org/10.1007/s42770-021-00624-x
- 4. Li X.L., Narenkumar J., Rajasekar A., Ting Y.-P. // 3 Biotech. 2018. V. 8. № 3. P. 178. https://doi.org/10.1007/s13205-018-1196-0
- 5. Zhao J., Csetenyi L., Gadd G. // International Biodeterioration & Biodegradation. 2020. V. 154. 105081. https://doi.org/10.1016/j.ibiod.2020.105081
- 6. Gharieb M.I., Ali M.I., El-Shoura A.A. // Biodegradation. 2004. V. 15. № 1. P. 49. https://doi.org/10.1023/B:BIOD.0000009962.48723.df
- 7. Белов Д.В., Беляев С.Н., Геворгян Г.А., Максимов М.В. // Журн. физ. химии. 2022. Т. 96. № 8. С. 1075. DOI: . Belov D.V., Belyaev S.N., Gevorgyan G.A., Maksimov M.V. // Rus. J. of Physical Chemistry A. 2022. V. 96. № 8. P. 1599.https://doi.org/10.1134/S003602442208005210.1134/S0036024422080052.https://doi.org/10.31857/S0044453722080052
- 8. Белов Д.В., Беляев С.Н. // Конденсированные среды и межфазные границы. 2022. Т. 24. № 2. С. 155. DOI: . Belov D.V., Belyaev S.N. // Condensed Matter and Interphases. 2022. V. 24. № 2. P. 155.https://doi.org/10.17308/kcmf.2022.24/9256.
- 9. Белов Д.В., Челнокова М.В., Калинина А.А. и др. // Коррозия: материалы, защита. 2011. № 3. С. 19.
- 10. Белов Д.В., Челнокова М.В., Соколова Т.Н. и др. // Изв. высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54. № 10. С. 133.
- 11. Белов Д.В., Челнокова М.В., Соколова Т.Н. и др. // Коррозия: материалы, защита. 2009. № 11. С. 43.
- 12. Коваль Э.З., Сидоренко Л.П. Микодеструкторы промышленных материалов. Киев: Наукова думка, 1989. 192 с.
- 13. Ринальди М., Саттон Д., Фотергилл А. Определитель патогенных и условно патогенных грибов. М.: Мир. 2001. 486 с.
- 14. Aruchamy A., Fujishima A. // J. Electroanal. Chem. 1989. V. 272. № 1–2. P. 125.
- 15. Di Quarto F., Piazza S., Sunseri C. // Electrochim. Acta. 1985. V. 30. № 3. P. 315.
- 16. Strehblow H.-H., Maurice V., Marcus P. // Electrochim. Acta. 2001. V. 46. P. 3755.
- 17. Modestov A.D., Zhou G.-D., Ge H.-H., Loo B.H. // J. Electroanal. Chem. 1995. V. 380. № 1–2. P. 63.
- 18. Bogdanowicz R., Ryl J., Darowicki K., Kosmowski B.B. // J. Solid State Electrochem. 2009. https://doi.org/10.1007/s10008-008-0650-z
- 19. Wilhelm S. M., Tanizawa Y., Chang-Yi Liu, Hackerman N. // Corr. Sci. 1982. V. 22. № 8. P. 791.
- 20. Chaudhary Y.S., Argaval A., Shrivastav R. et al. // Int. J. Hydrogen Energy. 2004. № 29. P. 131.
- 21. Kublanovsky V.S., Kolbasov G.Ya., Belinskii V.N. // J. Electroanal. Chem. 1996. V. 415. P. 161.
- 22. Kautek W., Gordon J.G. // J. Electrochem. Soc. 1990. V. 137. № 9. P. 2672.
- 23. Shoesmith D.W., Rummery T.E., Owen D., Lee W. // J. Electrochem. Soc. 1976. V. 123. № 6. P. 790.
- 24. Burke L.D., Ahern M.J.G., Ryan T.G. // Ibid. 1990. V. 137. № 2. P. 553.
- 25. Abd El Halem S.M., Ateya B.G. // J. Electroanal. Chem. 1981. V. 117. № 2. P. 309.
- 26. Ambrose J., Barradas R.G., Shoesmith D.W. // Ibid. 1973. V. 47. № 1. P. 65.
- 27. Ives D.J.G., Rawson A.E. // J. of The Electrochemical Society. 1962. V. 109. № 6. P. 447. https://doi.org/10.1149/1.2425445
- 28. Ives D.J.G., Rawson A.E. // Ibid. 1962. V. 109. № 6. P. 452. https://doi.org/10.1149/1.2425446.
- 29. Ives D.J.G., Rawson A.E. // Ibid. 1962. V. 109. № 6. P. 458. https://doi.org/10.1149/1.2425447.
- 30. Ives D.J.G., Rawson A.E. // Ibid.1962. V. 109. № 6. P. 462. https://doi.org/10.1149/1.2425448.
- 31. Белов Д.В., Беляев С.Н., Максимов М.В., Геворгян Г.А. // Вопросы материаловедения. 2021. Т. 3. № 107. С. 163. DOI: . Belov D.V., Belyaev S.N., Maksimov M.V., Gevorgyan G.A. // Inorganic Materials: Applied Research. 2022. V. 13. № 6. P. 1640.https://doi.org/10.1134/S207511332206002810.1134/S2075113322060028.https://doi.org/10.22349/1994-6716-2021-107-3-163-183
- 32. Ni Y.J., Cheng Y.Q., Xu M.Y., Qiu C.G. et al. // Huan jing ke xue= Huanjing kexue. 2019. V. 40. № 1. P. 293. https://doi.org/10.13227/j.hjkx.201803215
- 33. Liu A., Liu J., Han J., Zhang W. // J. of Hazardous Materials. 2017. V. 322. P. 129. https://doi.org/10.1016/j.jhazmat.2015.12.070
- 34. Ribeiro J.P., Nunes M.I. // Environmental Research. 2021. V. 197. 110957. https://doi.org/10.1016/j.envres.2021.110957
- 35. Zhou P., Zhang J., Zhang Y. et al. // J. of Molecular Catalysis A: Chemical. 2016. V. 424. P. 115. https://doi.org/10.1016/j.molcata.2016.08.022
- 36. Cheng M., Zeng G., Huang D. et al. // Chemical Engineering J. 2016. V. 284. P. 582. https://doi.org/10.1016/j.cej.2015.09.001
- 37. Li B., Fan Y., Li C., Zhao X., Liu K., Lin Y. // Electroanalysis. 2018. V. 30. P. 1. https://doi.org/10.1002/elan.201700574
- 38. Ensafi A.A., Abarghoui M.M., Rezaei B. // Electrochimica Acta. 2014. V. 123. P. 219. https://doi.org/10.1016/j.electacta.2014.01.031
- 39. Elwell C.E., Gagnon N.L., Neisen B.D. et al. // Chemical Reviews. 2017. V. 117. № 3. P. 2059. https://doi.org/10.1021/acs.chemrev.6b00636
- 40. Itoh S. // Accounts of Chemical Research. 2015. V. 48. № 7. P. 2066. https://doi.org/10.1021/acs.accounts.5b00140
- 41. Bailey W.D., Dhar D., Cramblitt A.C., Tolman W.B. // J. of the American Chemical Society. 2019. V. 141. № 13. P. 5470. https://doi.org/10.1021/jacs.9b00466