RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Structure and Kinetic Properties of a Molten FLiBe Mixture with Tritium

PII
10.31857/S0044453723120099-1
DOI
10.31857/S0044453723120099
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 12
Pages
1690-1698
Abstract
A study is performed of the self-diffusion of tritium and fluorine atoms, and the change in the structure of molten FLiBe upon raising the temperature of the system from 873 to 1073 K. The interaction between neutrons and both lithium and beryllium in molten-salt reactors (MSR) using FLiBe as a fuel salt results in the formation of large amounts of tritium. Tritium, which easily penetrates metallic structural materials at high temperatures, is a radionuclide hazard. Predictive models for the behavior of tritium in a molten fluoride salt must therefore be developed to solve the problem of MSR safety. The emergence of tritium in the system increases the average energy of interatomic bonds upon raising the temperature and concentration of tritium in the system. A rise in temperature is also accompanied by fluorine atoms creating a closer short-range order in the environment of tritium atoms. This is expressed in the formation of a high first peak of radial distribution function gT-F(r), an increase in the number of probable geometric neighbors, which is shown by Voronoi polyhedra, and fluorine atoms giving priority to fourth-order rotational symmetry in the environment of tritium atoms.
Keywords
диффузия многогранник молекулярная динамика солевой расплав структура тритий
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Yu S.H., Liu Y.F., Yang P. et al. // NUCL. SCI. TECH. 2021. V. 32. № 9. https://doi.org/10.1007/s41365-020-00844-0
  2. 2. Nasser S.A., Shayan M.E., Ghasemzadeh F. et al. Nuclear Power Plants – The Processes from the Cradle to the Grave, 2021, 166 c. https://doi.org/10.5772/intechopen.90939
  3. 3. Shishido H., Yusa N., Hashizume H. et al. // Fussion Sci. Technol. 2017. V. 68. P. 669–673. https://doi.org/10.13182/FST14-975
  4. 4. Redkin A., Khudorozhkova A., Il’ina E. et al. // J. Mol. Liq. 2021. V. 341. P. 117215. https://doi.org/10.1016/j.molliq.2021.117215
  5. 5. Tkacheva O.Yu., Rudenko A.V., Kataev A.A. et al. // RUSS J NON-FERR MET+. 2022. V. 63. P. 272–283. https://doi.org/10.3103/S1067821222030117
  6. 6. Dolan K., Zheng G., Sun K. et al. // Prog. Nucl. Energy. 2021. V. 131. P. 103576. https://doi.org/10.1016/j.pnucene.2020.103576
  7. 7. Wang H., Yue B., Yan L. et al. // J. Mol. Liquids 2022. V. 345. № 117027. https://doi.org/10.1016/j.molliq.2021.117027
  8. 8. Stempien J.D., Ballinger R.G., Forsberg C.W. // Nucl. Eng. Design 2016. V. 310. P. 258–272. https://doi.org/10.1016/j.nucengdes.2016.10.051
  9. 9. Qin H., Wang C., Zhang D. et al. // Prog. Nucl. Energy 2019. V. 117. № 103064. https://doi.org/10.1016/j.pnucene.2019.103064
  10. 10. Cantor S., Ward W.T., Moynihan C.T. // J. Chem. Phys. 1969. V. 50. P. 2874.
  11. 11. Soler J.M., Artacho E., Gale J.D. et al. // J. Phys. Condens. Matter. 2002. V. 14. P. 2745. https://doi.org/10.1088/0953-8984/14/11/302
  12. 12. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  13. 13. Nose S. // J. Chem. Phys. 1984. V. 81. P. 511.
  14. 14. Karki B.B., Bhattari D., Stixrude L. // Phys. Rev. 2006. V. 73. № 174208.
  15. 15. Галашев А.Е. // ЖФХ 2022. Т. 96. № 12. С. 1815. [Galashev A.E. Rus. J. Phys. Chem. A, 2022. V. 96. P. 2748.]
  16. 16. Galashev A.Y., Zaikov Yu.P. // J. Appl. Electrochem. 2019. V. 49. P. 1027–1034.
  17. 17. Philippi F., Welton T. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6993–7021. https://doi.org/10.1039/D1CP00216C
  18. 18. Galashev A.Y. // Appl. Sci. 2023. V. 13. P. 1085. https://doi.org/10.3390/app13021085
  19. 19. Calderoni P., Sharpe P., Hara M. et al. // Fusion Eng. Design 2008. V. 83. P. 1331–1334. https://doi.org/10.1016/j.fusengdes.2008.05.016
  20. 20. Lam S.T., Li Q.-J., Mailoa J. et al. // J. Mater. Chem. A. 2021. V. 9. P. 1784–1794. https://doi.org/10.1039/D0TA10576G
  21. 21. Pekar M. // ChemPhysChem. 2015. V. 16. P. 884–885. https://doi.org/10.1002/cphc.201402778
  22. 22. Galashev A.Y. // Nucl. Eng. Technol. 2023. https://doi.org/10.1016/j.net.2022.12.029
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library