ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Структура и кинетические свойства расплавленной смеси FLiBe в присутствии трития

Код статьи
10.31857/S0044453723120099-1
DOI
10.31857/S0044453723120099
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 97 / Номер выпуска 12
Страницы
1690-1698
Аннотация
Взаимодействие нейтронов как с литием, так и бериллием в жидкосолевых реакторах (ЖСР), использующих в качестве топливной соли FLiBe, приводит к образованию большого количества трития. Тритий, легко проникающий через металлические конструкционные материалы при высоких температурах, представляет радионуклидную опасность. Для решения вопроса безопасности ЖСР необходимо разработать прогностические модели поведения трития в расплавленной фторидной соли. В настоящей работе исследуется самодиффузия атомов трития и фтора, а также изменение структуры расплавленного FLiBe при росте температуры системы от 873 K до 1073 K. Появление трития в системе приводит к увеличению средней энергии межатомных связей как с ростом температуры, так и с повышением концентрации трития в системе. Увеличение температуры также сопровождается формированием более тесного ближнего порядка в окружении атомов трития атомами фтора. Это выражается в формировании высокого первого пика функции радиального распределения \({{g}_{{{\text{T}} - {\text{F}}}}}(r)\), увеличении числа вероятных геометрических соседей, определяемых через многогранники Вороного, и появлении приоритета вращательной симметрии четвертого порядка в окружении атомов трития атомами фтора.
Ключевые слова
диффузия многогранник молекулярная динамика солевой расплав структура тритий
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
4

Библиография

  1. 1. Yu S.H., Liu Y.F., Yang P. et al. // NUCL. SCI. TECH. 2021. V. 32. № 9. https://doi.org/10.1007/s41365-020-00844-0
  2. 2. Nasser S.A., Shayan M.E., Ghasemzadeh F. et al. Nuclear Power Plants – The Processes from the Cradle to the Grave, 2021, 166 c. https://doi.org/10.5772/intechopen.90939
  3. 3. Shishido H., Yusa N., Hashizume H. et al. // Fussion Sci. Technol. 2017. V. 68. P. 669–673. https://doi.org/10.13182/FST14-975
  4. 4. Redkin A., Khudorozhkova A., Il’ina E. et al. // J. Mol. Liq. 2021. V. 341. P. 117215. https://doi.org/10.1016/j.molliq.2021.117215
  5. 5. Tkacheva O.Yu., Rudenko A.V., Kataev A.A. et al. // RUSS J NON-FERR MET+. 2022. V. 63. P. 272–283. https://doi.org/10.3103/S1067821222030117
  6. 6. Dolan K., Zheng G., Sun K. et al. // Prog. Nucl. Energy. 2021. V. 131. P. 103576. https://doi.org/10.1016/j.pnucene.2020.103576
  7. 7. Wang H., Yue B., Yan L. et al. // J. Mol. Liquids 2022. V. 345. № 117027. https://doi.org/10.1016/j.molliq.2021.117027
  8. 8. Stempien J.D., Ballinger R.G., Forsberg C.W. // Nucl. Eng. Design 2016. V. 310. P. 258–272. https://doi.org/10.1016/j.nucengdes.2016.10.051
  9. 9. Qin H., Wang C., Zhang D. et al. // Prog. Nucl. Energy 2019. V. 117. № 103064. https://doi.org/10.1016/j.pnucene.2019.103064
  10. 10. Cantor S., Ward W.T., Moynihan C.T. // J. Chem. Phys. 1969. V. 50. P. 2874.
  11. 11. Soler J.M., Artacho E., Gale J.D. et al. // J. Phys. Condens. Matter. 2002. V. 14. P. 2745. https://doi.org/10.1088/0953-8984/14/11/302
  12. 12. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  13. 13. Nose S. // J. Chem. Phys. 1984. V. 81. P. 511.
  14. 14. Karki B.B., Bhattari D., Stixrude L. // Phys. Rev. 2006. V. 73. № 174208.
  15. 15. Галашев А.Е. // ЖФХ 2022. Т. 96. № 12. С. 1815. [Galashev A.E. Rus. J. Phys. Chem. A, 2022. V. 96. P. 2748.]
  16. 16. Galashev A.Y., Zaikov Yu.P. // J. Appl. Electrochem. 2019. V. 49. P. 1027–1034.
  17. 17. Philippi F., Welton T. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6993–7021. https://doi.org/10.1039/D1CP00216C
  18. 18. Galashev A.Y. // Appl. Sci. 2023. V. 13. P. 1085. https://doi.org/10.3390/app13021085
  19. 19. Calderoni P., Sharpe P., Hara M. et al. // Fusion Eng. Design 2008. V. 83. P. 1331–1334. https://doi.org/10.1016/j.fusengdes.2008.05.016
  20. 20. Lam S.T., Li Q.-J., Mailoa J. et al. // J. Mater. Chem. A. 2021. V. 9. P. 1784–1794. https://doi.org/10.1039/D0TA10576G
  21. 21. Pekar M. // ChemPhysChem. 2015. V. 16. P. 884–885. https://doi.org/10.1002/cphc.201402778
  22. 22. Galashev A.Y. // Nucl. Eng. Technol. 2023. https://doi.org/10.1016/j.net.2022.12.029
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека