- PII
- 10.31857/S0044453723120117-1
- DOI
- 10.31857/S0044453723120117
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 12
- Pages
- 1699-1706
- Abstract
- The effect of imprinting of a polymer matrix based on ethylene glycol dimethacrylate on the kinetics and dynamics of binding of the glucose target molecule has been studied. The contribution of the adsorption act to the sorption kinetics of the target sorbate by the molecularly imprinted polymer was established. Mixed-diffusion limitation of mass transfer and cooperative adsorption of glucose molecules during sorption by both imprinted and nonimprinted polymer granules were revealed. The binding rate and accessibility of sorption sites in the imprinted polymer were shown to increase, and frontal sorption occurred in a regular mode.
- Keywords
- массоперенос регулярный режим молекулярный импринтинг полимерные сорбенты кинетика сорбции динамика сорбции
- Date of publication
- 13.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Wulff G., Sarhan A. // Angew. Chem. Int. Ed. in English. 1972. V. 11. I. 4. P. 341. https://doi.org/10.1002/anie.197203341.
- 2. Wulff G., Grobe-Einsler R., Vesper W., Sarhan A. // Die Makromol. Chemie. 1977. V. 178. I. 10 P. 2817. https://doi.org/10.1002/macp.1977.021781005
- 3. Arshady R., Mosbach K. // Die Makromol. Chemie. 1981. V. 182. I. 2. P. 687. https://doi.org/10.1002/macp.1981.021820240
- 4. Asadi E., Abdouss M., Leblanc R.M. et al. // Polymer. 2016. V. 97. P. 226. https://doi.org/10.1016/j.polymer.2016.05.031
- 5. Mayes A.G., Whitcombe M.J. Synthetic strategies for the generation of molecularly imprinted organic polymers // Adv. Drug Deliv. Rev. 2005. V. 57. I. 12. P. 1742. https://doi.org/10.1016/J.ADDR.2005.07.011
- 6. Podjava A., Šilaks A. // J. Liq. Chromatogr. Relat. Technol. V. 44. I. 3–4. P. 181. https://doi.org/10.1080/10826076.2021.1874980
- 7. Aguilar J.F.F., Miranda J.M., Rodriguez J.A. et al. // J. Polym. Res. 2020. V. 27. I. 7. Art. 176. https://doi.org/10.1007/s10965-020-02139-9
- 8. Madikizela L.M., Nomngongo P.N., Pakade V.E. // J. Pharm. Biomed. Anal. 2022. V. 208. P. 114447. https://doi.org/10.1016/J.JPBA.2021.114447
- 9. Захарова М.А., Полякова И.В., Грошикова А.Р. и др. // НТВ СПбГПУ. Физико-математические науки. 2011. Т. 4. № 3. С. 127.
- 10. Willaman J.J., Davison F.R. // J. Agric. Res. 1924. V. 28. I. 5. P. 479.
- 11. Boyd G.E., Adamson A.W., Myers L.S. // J. Am. Chem. Soc. 1947. V. 69. I. 11. P. 2836. https://doi.org/10.1021/ja01203a066
- 12. Lagergren S. Zur Theorie der sogenannten Adsorption gelöster Stoffe // undefined. Springer-Verlag, 1907. V. 2. № 1. P. 15.
- 13. Jasper E.E., Ajibola V.O., Onwuka J.C. // Appl. Water Sci. 2020. V. 10. I. 6. P. 1. https://doi.org/10.1007/s13201-020-01218-y
- 14. Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. I. 5. P. 451.