RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Kinetics and Dynamics of Sorption of the Glucose Target Molecule by a Molecularly Imprinted Polymer

PII
10.31857/S0044453723120117-1
DOI
10.31857/S0044453723120117
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 12
Pages
1699-1706
Abstract
The effect of imprinting of a polymer matrix based on ethylene glycol dimethacrylate on the kinetics and dynamics of binding of the glucose target molecule has been studied. The contribution of the adsorption act to the sorption kinetics of the target sorbate by the molecularly imprinted polymer was established. Mixed-diffusion limitation of mass transfer and cooperative adsorption of glucose molecules during sorption by both imprinted and nonimprinted polymer granules were revealed. The binding rate and accessibility of sorption sites in the imprinted polymer were shown to increase, and frontal sorption occurred in a regular mode.
Keywords
массоперенос регулярный режим молекулярный импринтинг полимерные сорбенты кинетика сорбции динамика сорбции
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Wulff G., Sarhan A. // Angew. Chem. Int. Ed. in English. 1972. V. 11. I. 4. P. 341. https://doi.org/10.1002/anie.197203341.
  2. 2. Wulff G., Grobe-Einsler R., Vesper W., Sarhan A. // Die Makromol. Chemie. 1977. V. 178. I. 10 P. 2817. https://doi.org/10.1002/macp.1977.021781005
  3. 3. Arshady R., Mosbach K. // Die Makromol. Chemie. 1981. V. 182. I. 2. P. 687. https://doi.org/10.1002/macp.1981.021820240
  4. 4. Asadi E., Abdouss M., Leblanc R.M. et al. // Polymer. 2016. V. 97. P. 226. https://doi.org/10.1016/j.polymer.2016.05.031
  5. 5. Mayes A.G., Whitcombe M.J. Synthetic strategies for the generation of molecularly imprinted organic polymers // Adv. Drug Deliv. Rev. 2005. V. 57. I. 12. P. 1742. https://doi.org/10.1016/J.ADDR.2005.07.011
  6. 6. Podjava A., Šilaks A. // J. Liq. Chromatogr. Relat. Technol. V. 44. I. 3–4. P. 181. https://doi.org/10.1080/10826076.2021.1874980
  7. 7. Aguilar J.F.F., Miranda J.M., Rodriguez J.A. et al. // J. Polym. Res. 2020. V. 27. I. 7. Art. 176. https://doi.org/10.1007/s10965-020-02139-9
  8. 8. Madikizela L.M., Nomngongo P.N., Pakade V.E. // J. Pharm. Biomed. Anal. 2022. V. 208. P. 114447. https://doi.org/10.1016/J.JPBA.2021.114447
  9. 9. Захарова М.А., Полякова И.В., Грошикова А.Р. и др. // НТВ СПбГПУ. Физико-математические науки. 2011. Т. 4. № 3. С. 127.
  10. 10. Willaman J.J., Davison F.R. // J. Agric. Res. 1924. V. 28. I. 5. P. 479.
  11. 11. Boyd G.E., Adamson A.W., Myers L.S. // J. Am. Chem. Soc. 1947. V. 69. I. 11. P. 2836. https://doi.org/10.1021/ja01203a066
  12. 12. Lagergren S. Zur Theorie der sogenannten Adsorption gelöster Stoffe // undefined. Springer-Verlag, 1907. V. 2. № 1. P. 15.
  13. 13. Jasper E.E., Ajibola V.O., Onwuka J.C. // Appl. Water Sci. 2020. V. 10. I. 6. P. 1. https://doi.org/10.1007/s13201-020-01218-y
  14. 14. Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. I. 5. P. 451.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library