RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Investigation of Physicochemical Characteristics of Lead Dioxide Coatings to Enhance the Performance of Reserve Quickly Activated Chemical Power Sources in the Lead–Perchloric Acid–Lead Dioxide System

PII
10.31857/S0044453723120269-1
DOI
10.31857/S0044453723120269
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 12
Pages
1783-1793
Abstract
The relationship between the discharge characteristics of reserve chemical power sources of the lead–perchloric acid–lead dioxide system and the physicochemical properties of electroplated cathode coatings with lead dioxide, including phase composition and microstructure, has been studied. The study reveals that the discharge characteristics of power sources can be enhanced by employing a two-layer lead dioxide coating consisting of a porous outer layer and a denser inner layer. The findings have been validated through the production and testing of industrial prototypes of pilot miniature reserve power sources, which exhibit improved performance even at low temperatures (activation time, less than 30 ms; discharge capacity, ~200 mA min/cm2; discharge voltage per cell, 1.8–1.2 V at –50°C).
Keywords
диоксид свинца α-PbO<sub>2</sub> β-PbO<sub>2</sub> свинец хлорная кислота рентгенофазовый анализ микроструктура хронопотенциометрия резервный химический источник тока разрядные кривые емкость время активации
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Bagotsky V.S., Skundin A.M., Volfkovich Yu.M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors, Hoboken, N.J.: John Willey & Sons, Inc, 2015. 400 p.
  2. 2. Handbook of Batteries / Editors D. Linden and T.B. Reddy. New York, Chicago, etc.: McGraw-Hill, 2002. 1453 p.
  3. 3. Постановление Правительства Российской Федерации № 484 от 30.03.2021 г. об утверждении государственной программы Российской Федерации “Социально-экономическое развитие Арктической зоны Российской Федерации”. Дата опубликования 02.04.2021 на сайте publication.pravo.gov.ru, номер опубликования 0001202104020037. URL: http://publication.pravo.gov.ru/Document/View/0001202104020037
  4. 4. Бузник В.М., Каблов Е.Н. // Вестн. РАН. 2017. Т. 87. № 9. С. 827. [Buznik V.M., Kablov E.N. // Herald of the Russian Academy of Sciences. 2017. V. 87. № 5. P. 397.]
  5. 5. Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Электрохимия. 2023. В печати.
  6. 6. Mindt W. // J. Electrochem. Soc. 1969. V. 116. № 8. P. 1076.
  7. 7. Рахмани Л., Фитас Р., Мессаи А., Айеш А.И. // Электрохимия. 2019. Т. 55. № 7. С. 832. [L. Rahmani, R. Fitas, A. Messai, and A. I. Ayesh. Russ. J. Electrochem., 2019, V. 55. P. 643]
  8. 8. Pavlov D. Lead-Acid Batteries: Science and Tecnology: A Handbook of Lead-Acid Battery Technology and Its Influence on the Product, 2nd Edition. Amsterdam, Oxford, Cambridge: Elsevier, 2017. 720 p.
  9. 9. Pavlov D. // J. Power Sources. 1992. V. 40. P. 169.
  10. 10. Pavlov D. // J. Electrochem. Soc. 1992. V. 139. № 11. P. 3075.
  11. 11. Шпекина В.И. Разработка технологии электроосаждения диоксида свинца на различные подложки в ультразвуковом поле. Дис… канд. техн. наук. Саратов, ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”. 2016. 136 с. [Shpekina V.I. Development of technology of electrodepotion of lead dioxide onto various substrates in ultrasouic field. Dissertation. Saratov, The Saratov State Technical University named after Gagarin Yu.A. (in Russian), 2016, 136 p.].
  12. 12. Dodson V.H. // J. Electrochem. Soc. 1961. V. 108. № 5. P. 406–412.
  13. 13. Rüetschi P. // J. Electrochem. Soc. 1992. V. 139. № 5. P. 1347–1351.
  14. 14. Антонов А.В. // Вестн. национ. техн. ун-та Харьковский политех. институт. Харьков. (Вісник НТУ “ХПІ”). 2013, № 47 (1020). С. 15.
  15. 15. Михайленко В.Г., Антонов А.В. // Гальванотехника и обработка поверхности. 2014. Т. 22. № 2. С. 29.
  16. 16. Li X., Pletcher D., Walsh F.C. Electrodeposited lead dioxide coatings // Chem. Soc. Rev. 2011. V. 40. P. 3879.
  17. 17. ГОСТ 9.305-84. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий: межгосударственный стандарт: издание официальное. М.: ИПК Изд-во стандартов, 2003. [GOST 9.305-84. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Technological process operations for coating production: interstate standard: official publication (in Russian). Moscow, 2003].
  18. 18. Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д., Краснов В.В. // Электрохим. энергетика. 2011. Т. 11. С. 154 [Gorbachev N.V., Gorbacheva E.Yu., Solov’eva N.D., Krasnov V.V. // Elektrokhim. Energetika (in Russian). 2011. V. 11. P. 154].
  19. 19. Holzwarth U., Gibson N. The Scherrer equation versus the “Debye- Scherrer equation” // Nature Nanotechnology. 2011. V. 6. P. 534.
  20. 20. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. М.: МИСИС, 1994. 328 с.
  21. 21. Tabat S., Nowacki A., Szcześniak B. // J. Power Sources. 1990. V. 31. P. 339.
  22. 22. Velichenko A.B., Amadelli R., Benedetti A. et al. // J. Electrochem. Soc. 2002. V. 149. № 9. P. C445.
  23. 23. Киселева И.Г., Кабанов Б.Н. // Докл. АН СССР. 1958. Т. 122. № 6. С. 1042.
  24. 24. Yoon S.-H., Son J.-T., Oh J.-S. // J. Power Sources. 2006. V. 162. P. 1421.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library