RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Fenton-Like Oxidation Systems for Destruction of Azo Dyes in Aqueous Solutions

PII
10.31857/S0044453723120270-1
DOI
10.31857/S0044453723120270
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 12
Pages
1707-1717
Abstract
The kinetic regularities of degradation of the azo dye methyl orange (MO) in photoinitiated oxidizing systems have been studied using a xenon lamp (UV–Vis) as a source of quasi-solar radiation. According to the efficiency and rate of dye destruction, the considered oxidizing systems can be arranged in the following series: {UV–Vis} < {UV–Vis/S2O2-8} < {S2O2-8/Fe0} < {UV–Vis/S2O2-8/Fe0} < {UV–Vis/S2O2-8/Fe2+}. It has been established that in photoinitiated Fenton-like oxidizing systems there is not only complete conversion of MO but also its deep mineralization in aqueous solution; a decrease in the content of total organic carbon reaches 60%. In this case, the specific catalytic activity of iron ions in the combined system {UV–Vis/S2O2-8/Fe0} is much higher than in {UV–Vis/S2O2-8/Fe2+}. Using inhibitors of radical reactions, it has been proved that in the combined system {UV–Vis/S2O2-8/Fe0} both hydroxyl and sulfate anion radicals take part in oxidative degradation. An inhibitory influence of anions (bicarbonates, chlorides, nitrates, and sulfates) and natural dissolved organic matter (Suwanee River 2R101N) on the process of mineralization of total organic carbon during oxidative destruction of MO in the combined system {UV–Vis/S2O /Fe0} has been found.
Keywords
Фентон-подобная окислительная система квазисолнечное излучение метиловый оранжевый персульфат окислительная деструкция минерализация активные формы кислорода
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Han M., Wang H., Jin W. et al. // J. Environ. Sci. 2023. V. 128. P. 181. https://doi.org/10.1016/j.jes.2022.07.037
  2. 2. Li L., Yuan X., Zhou Zh. et al. //J. Clean. Prod. V. 372. P. 133420. https://doi.org/10.1016/j.jclepro.2022.133420
  3. 3. Ramos B., Ferreira L.B., Palharim P.H. et al. // Chem. Eng. J. Adv. 2023. V. 14. P. 100473. https://doi.org/10.1016/j.ceja.2023.100473
  4. 4. Giannakis S., Samoili S., Rodríguez-Chueca J. // Curr. Opin. Green Sustain. Chem. 2021. V. 29. P. 100456. https://doi.org/10.1016/j.cogsc.2021.100456
  5. 5. Linden K.G., Mohseni M. // Compr. Water Q. Purif. 2014. V. 2. P. 148.
  6. 6. Karim A.V., Jiao Y., Zhou M., Nidheesh P. // Chemosphere. 2021. V. 265. P. 129057. https://doi.org/10.1016/j.chemosphere.2020.129057
  7. 7. Ghanbari F., Moradi M., Gohari F. // J. Water Process. Eng. 2016. V. 9. P. 22. https://doi.org/10.1016/j.jwpe.2015.11.011
  8. 8. Wang W., Chen M., Wang D. et al. // Sci. Total Environ. 2021. V. 772. P. 145522 https://doi.org/10.1016/j.scitotenv.2021.145522
  9. 9. Zawadzki P. // Curr. Opin. Green Sustain. Chem. 2022. V. 37. P. 100837. https://doi.org/10.1016/j.coche.2022.100837
  10. 10. Gao Y., Champagne P., Blair D. // Water Sci. Technol. 2020. V. 81. P. 853. https://doi.org/10.2166/wst.2020.190
  11. 11. Khan J.A., He X., Khan H.M. // Chem. Eng. J. 2013. V. 218. P. 376. https://doi.org/10.1016/j.cej.2012.12.055
  12. 12. Ahmed M.M., Chiron S. //Water Res. 2014. V. 48. P. 229. https://doi.org/10.1016/j.watres.2013.09.033
  13. 13. Yang J., Zhu M., Dionysiou D.D. // Water Res. 2021. V. 189. P. 116627. https://doi.org/10.1016/j.watres.2020.116627
  14. 14. Pozdnyakov I.P., Glebov E.M., Plyusnin V.F. et al. // Mendeleev Commun. 2020. V. 10. P. 185. https://doi.org/10.1070/MC2000v010n05ABEH001316
  15. 15. Сизых М.Р., Батоева А.А. // Журн. физ. химии. 2019. Т. 93. № 12. С. 1773. (Sizykh M.R., Batoeva A.A. // Rus. J. Phys. Chem. A. 2019. V. 93. P. 2349.) https://doi.org/10.1134/S003602441912029X
  16. 16. Ioannidi A., Frontistis Z., Mantzavinos D. // J. Environ. Chem. Eng. 2018. V. 6. P. 2992. https://doi.org/10.1016/j.jece.2018.04.049
  17. 17. Rivas-Zaballos I., Romero-Martínez L., Moreno-Garrido I. // J. Water Process. Eng. 2023. V. 51. P. 103361. https://doi.org/10.1016/j.jwpe.2022.103361
  18. 18. Omri A., Hamza W., Benzina M. // J. Photochem. Photobiol. A Chem. 2020. V. 393. P. 112444. https://doi.org/10.1016/j.jphotochem.2020.112444
  19. 19. Li P., Liu Z., Wang X. et al. // Chemosphere. 2017. V. 180. P. 100. https://doi.org/10.1016/j.chemosphere.2017.04.019
  20. 20. Zhang L., Xiao C., Li Z. et al. // Appl. Surf. Sci. 2023. V. 618. P. 156595. https://doi.org/10.1016/j.apsusc.2023.156595
  21. 21. Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. https://doi.org/10.1016/j.cej.2020.128392
  22. 22. Хандархаева М.С., Батоева А.А., Асеев Д.Г., Сизых М.Р. // Журн. прикл. химии. 2015. Т. 88. № 5. С. 1420 [Khandarkhaeva M.S., Batoeva A.A., Aseev D.G., Sizykh M.R. // Russ. J. Appl. Chem. 2015. V. 88. P. 1605.].
  23. 23. Mengqi H., Hui W., Wei J. // J. Environ. Sci. (China). 2023. V. 128. P. 181. https://doi.org/10.1016/j.jes.2022.07.037
  24. 24. Jiang X., Wu Y., Wang P. et al. // Environ. Sci. Pollut. Res. 2013. V. 20. P. 4947. https://doi.org/10.1007/s11356-013-1468-5
  25. 25. Rodriguez S., Santos A., Romero A. // Chem. Eng. J. 2017. V. 318. P. 197. https://doi.org/10.1016/j.cej.2016.06.057
  26. 26. Oh S.-Y., Kang S.-G., Chiu P.C. // Sci. Total Environ. 2010. V. 408. P. 3464. https://doi.org/10.1016/j.scitotenv.2010.04.032
  27. 27. Liang C., Guo Y.Y. // Environ. Sci. Technol. 2010. V. 44. P. 8203. https://doi.org/10.1021/es903411a
  28. 28. Michael-Kordatou I., Iacovou M., Frontistis Z. et al. // Water Res. 2015. V. 85. P. 346. https://doi.org/10.1016/j.watres.2015.08.050
  29. 29. Li B., Li L., Lin K. et al. // Ultrason. Sonochem. 2013. V. 20. P. 855. https://doi.org/10.1016/j.ultsonch.2012.11.014
  30. 30. Joseph J.M., Destaillats H., Hung H.M., Hoffman M.R. // J. Phys. Chem. A. 2000. Vol. 104. P. 301–307. https://doi.org/10.1021/jp992354m
  31. 31. Ge D., Zeng Z., Arowo M., Zou H. // Chemosphere. 2016. V. 146. P. 413. https://doi.org/10.1016/j.chemosphere.2015.12.058
  32. 32. Методика экспрессного определения интегральной химической токсичности питьевых, поверхностных, грунтовых, сточных и очищенных сточных вод с помощью бактериального теста “Эколюм”. Методические рекомендации № 01.021-07. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2007. 16 с.
  33. 33. Wang L., Zhang Q., Chen B. et al. // Water Res. 2020. V. 174. P. 115605. https://doi.org/10.1016/j.watres.2020.115605
  34. 34. Ghanbari F., Riahi M., Kakavandi B. et al. // J. Water Process. Eng. 2020. V. 36. P. 101321. https://doi.org/10.1016/j.jwpe.2020.101321
  35. 35. Сизых М.Р., Батоева А.А., Мункоева В.А. // Журн. физ. хим. 2021. Т. 95. С. 947. (Sizykh M.R., Batoeva A.A., Munkoeva V.A. // Rus. J. Phys. Chem. A. 2021. V. 95. P. 1230.) https://doi.org/10.1134/S0036024421060236
  36. 36. Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. https://doi.org/10.1016/j.cej.2020.128392
  37. 37. Fang G.-D., Dionysiou D. D., Wang Y. et al. // J. Hazard. Mater. 2012. V. 227–228. P. 394. https://doi.org/10.1016/j.jhazmat.2012.05.074
  38. 38. Luo C., Ma J., Jiang J. et al. // Water Res. 2015. V. 80. P. 99. https://doi.org/10.1016/j.watres.2015.05.019
  39. 39. Yu X.-Y., Barker J.R. // J. Phys. Chem. A. 2003. V. 107. P. 1313. https://doi.org/10.1021/jp0266648
  40. 40. Yang S., Zhang X., Tang J., Zhang A. // J. Environ. Chem. Eng. 2022. V. 10. P. 108806 https://doi.org/10.1016/j.jece.2022.108806
  41. 41. Fan J., Guo Y., Wang J., Fan M. // J. Hazard. Mater. 2009. V. 166. P. 904. https://doi.org/10.1016/j.jhazmat.2008.11.091
  42. 42. Basfar A.A., Mohamed K.A., Al-Abduly A.J., Al-Shahrani A.A. // Ecotoxicol. Environ. Saf., 2009. V. 72. P. 948. https://doi.org/10.1016/j.ecoenv.2008.05.006
  43. 43. Garbin J.R., Milori D.M.B.P., Simões M.L., da Silva W.T et al. // Chemosphere. 2007. V. 66. P. 1692. https://doi.org/10.1016/j.chemosphere.2006.07.017
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library