RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Size Effect of the Electron Yield Work on Single-Crystal Silicon Samples

PII
10.31857/S0044453723120282-1
DOI
10.31857/S0044453723120282
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 12
Pages
1757-1762
Abstract
Changes in electron work function (EWF) @=(ft) during the separation of Si(100) single-crystal silicon wafers into smaller samples (scribing operation) have been studied by the method of kinetic curves of EWF. The observed effect can be attributed to the sorption of water vapor on the Si(100) surface. The Helmholtz formula has been applied to estimate the amount of water absorbed by the samples, causing a change in the EWF. To determine the localization of sorbed water, we have used the method of layer-by-layer etching of the surface of Si(100) samples using low-temperature SF6-plasma. It has been shown that with a decrease in the size (area) of the samples, the size effect of the EWF takes place. For a whole plate (with an area of 80 cm2) is characterized by the EWF value close to its reference value (@=5.0) eV), while for small samples (~1 cm2), this value decreases to 4.5 eV, which indicates a significant water content in the samples (~0.3 × 1015 molecules cm–2). The data on sample etching by plasma have showed that water is unevenly distributed over the thickness of the sample, and is mainly concentrated in its deeper layers, not changed by mechanical processing (grinding and polishing). The results obtained are consistent with the theory of the secondary structure of a crystal (SSC), according to which crystalline solids have regular gaps (“T-space”) with a size of “1 atomic layer,” in which impurity transfer processes occur. Apparently, chemisorption of water takes place in the micropores of the T-space, which leads to size effects on Si(100).
Keywords
монокристаллический кремний работа выхода электрона размерный эффект хемосорбция вторичная структура кристалла
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Ролдугин В.И. Физикохимия поверхности. Долгопрудный: Интеллект, 2008. 565 с.
  2. 2. Дзидзигури Э.Л. // Тр. конференции “Нанотехнологии функциональных материалов. НФМ'2010”. С. 74.
  3. 3. Vasilev A.A., Ivantsov M.I., Dzidziguri E.L. et al. // Fuel. 2022. V. 310. P. 122455.
  4. 4. Новиков С.Н., Сухоруков О.Г., Тимошенков С.П. и др. // Журн. общ. химии. 2012. Т. 82. № 1. С. 57.
  5. 5. Грег С., Синг К. Адсорбция. Удельная поверхность. Пористость. М.: Мир, 1984. 306 с. (Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity. London: Academic Press, 1982. 303 p.)
  6. 6. Thiel P.A., Madey T.E. // Surf. Sci. Rep. 1987. V. 7. P. 211.
  7. 7. Вудраф Д., Делчар Т. Современные методы исследования поверхности. М.: Мир, 1989. 564 с. (Woodruff D.P., Delchar T.A. Modern Techniques of surface science. Cambridge: Cambridge university press, 1986. 453 p.)
  8. 8. Новиков С.Н., Тимошенков С.П. // Изв. вузов. Электроника. 2002. № 5. С. 81.
  9. 9. Физические величины. Справочник. М.: Энергоатомиздат, 1991. С. 568.
  10. 10. Справочник по дипольным моментам. М.: Высш. школа, 1971. С. 30.
  11. 11. Borman V.D., Lebedinski Yu.Yu., Trojan V.J. // Phys. Low-Dim. Struct. 1998. V. 7–8. P. 167.
  12. 12. Веснин Ю.И. Вторичная структура и свойства кристаллов. Новосибирск: Издательство СО РАН, 1997. С. 16.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library