RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Теоретическое исследование адсорбции некоторых азолов на поверхности графена

PII
10.31857/S0044453724010193-1
DOI
10.31857/S0044453724010193
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 1
Pages
153-158
Abstract
Изучена адсорбция 1Н-пиразола, 1Н-имидазола и 1Н-1,2,4-триазола на поверхности однородного графена с помощью теории функционала плотности. Рассчитаны атомные заряды по методу Малликена для индивидуальных азолов, согласно которым электронная структура 1Н-имидазола с выраженным диполем является наиболее благоприятной для адсорбции на поляризуемом графене. Построены кривые потенциалов Леннард-Джонса, из которых найдены значения энтальпий адсорбции азолов. Оценены электронные возмущения, возникающие как изменения электронной плотности в ходе связывания с графеном. Проведено сравнение полученных результатов с литературными данными о характере адсорбции азолов на неполярных сорбентах. Отмечена необходимость учета распределения электронной плотности при объяснении механизма адсорбции на поверхности графена.
Keywords
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Arora P., Arora V., Lamba H.S. et al. // IJPSR. 2012. V. 3. No 9. P. 2947.
  2. 2. Östman C.E., Colmsjö A.L. // Fuel. 1988. V. 67. March. P. 396.
  3. 3. Kurbatova S.V., Kharitonova O.V., Finkel’shtein E.E. // Rus. J. of Phys. Chem. A. 2008. V. 82. No 11. P. 1932–1937. https://doi.org/10.1134/S003602440811023X.
  4. 4. Попов М.С., Ульяновский Н.В. // Масс-спектрометрия. 2019. Т. 16. № 3. С. 205. https://doi.org/10.25703/MS.2019.16.36.
  5. 5. Киселев А.В., Полотнюк Е.Б., Щербакова К.Д. // Докл. АН СССР. 1982. Т. 266. С. 892.
  6. 6. Киселев А.В., Пошкус Д.П., Щербакова К.Д. // Журн. физ. химии. 1986. Т. 60. № 6. С. 1329–1343.
  7. 7. Bobyleva M.S., Kiselev A.V., Kulikov N.S. et al. // Adsorption Science & Technology. 1985. V. 2. No 3. P. 165. https://doi.org/10.1177/026361748500200303.
  8. 8. Zhuravleva I.L., Krikunova N.I., Golovnya R.V. // Rus. Chem. Bulletin. 1995. V. 44. No 2. P. 300.
  9. 9. Golovnya R.V., Kuz’menko T.E., Zhuravleva I.L. // Ibid. 1999. V. 48. No 4. P. 726.
  10. 10. Zhuravleva I.L., Kuz’menko T.E. // Ibid. 1999. V. 48. No 10. P. 1931.
  11. 11. Golubović J., Protić A., Zečević M. et al. // Talanta. 2012. V. 100. P. 329–337. https://doi.org/10.1016/j.talanta.2012.07.071.
  12. 12. Motta M., Rice J.E. // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022. V. 12. No 3. https://doi.org/10.1002/wcms.1580.
  13. 13. Tsuneda T. Density Functional Theory in Quantum Chemistry Density Functional Theory in Quantum Chemistry. 1st ed. Tokyo: Springer Tokyo, 2014. https://doi.org/10.1007/978-4-431-54825-6.
  14. 14. Nakada K., Ishii A. // Solid State Communications. 2011. V. 151. No 1. P. 13. https://doi.org/10.1016/j.ssc.2010.10.036.
  15. 15. Peng B., Chen L., Que C. et al. // Scientific Reports. 2016. V. 6. No 1. P. 31920. https://doi.org/10.1038/srep31920.
  16. 16. Tavassoli Larijani H., Darvish Ganji M., Jahanshahi M. // RSC Advances. 2015. V. 5. No 113. P. 92843–92857. https://doi.org/10.1039/C5RA16683G.
  17. 17. Li B., Ou P., Wei Y. et al. // Materials. 2018. V. 11. No 5. P. 726. https://doi.org/10.3390/ma11050726.
  18. 18. Qin W., Li X., Bian W.-W. et al. // Biomaterials. 2010. V. 31. No 5. P. 1007–1016. https://doi.org/10.1016/j.biomaterials.2009.10.013.
  19. 19. Wuest J.D., Rochefort A. // Chemical Communications. 2010. V. 46. No 17. P. 2923. https://doi.org/10.1039/b926286e.
  20. 20. Voloshina E.N., Mollenhauer D., Chiappisi L. et al. // Chemical Physics Letters. 2011. V. 510. No 4–6. P. 220–223. https://doi.org/10.1016/j.cplett.2011.05.025.
  21. 21. Grinevich O.I., Volkov V.V., Buryak A.K. // Physical Chemistry Chemical Physics. Royal Society of Chemistry. 2022. V. 24. No 48. P. 29712. https://doi.org/10.1039/d2cp05096j.
  22. 22. Perdew J.P., Burke K., Ernzerhof M. // Physical Review Letters. 1996. V. 77. No 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
  23. 23. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Ibid.2008. V. 100. No 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406.
  24. 24. Grimme S., Antony J., Ehrlich S. et al. // J. of Chemical Physics. 2010. V. 132. No 15. P. 154104. https://doi.org/10.1063/1.3382344.
  25. 25. VandeVondele J., Hutter J. // Ibid.2007. V. 127. No 11. P. 114105. https://doi.org/10.1063/1.2770708.
  26. 26. Goedecker S., Teter M. // Physical Review B — Condensed Matter and Materials Physics. 1996. V. 54. No 3. P. 1703–1710. https://doi.org/10.1103/PhysRevB.54.1703.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library