ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Метод описания линии фазового равновесия перфтороктана на основе уравнения Клапейрона – Клаузиуса в диапазоне температур от тройной точки до критической

Код статьи
10.31857/S0044453724030033-1
DOI
10.31857/S0044453724030033
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 98 / Номер выпуска 3
Страницы
15-26
Аннотация
Разработана новая модель линии фазового равновесия (ЛФР) перфтороктана (C8F18), в основе которой лежат уравнение Клапейрона – Клаузиуса и соотношения теории ренормализационной группы (РГ). В отличие от известных ЛФР, при описании плотности насыщенной жидкости, , плотности насыщенного пара, , и давления насыщенного пара, , перфтороктана использована система взаимосогласованных уравнений (СВУ): , , , теплоты парообразования и «кажущейся» теплоты парообразования, r* = r / (1− ), которые имеют ряд общих параметров: критические индексы, критические параметры и коэффициенты среднего диаметра, , рассчитанные в рамках современной теории РГ для асимметричных систем. Показано, что на основе предложенного подхода разработана линия насыщения перфтороктана, средний диаметр, , которой описывается в соответствии с теорией РГ зависимостью: , где – критическая температура. Установлено, что в рамках предложенного подхода – это строго убывающая функция температуры. В рамках предложенной модели ЛФР опытные данные о и Хайрулина Р.А. и Станкуса С.В. (2021) передаются в пределах их экспериментальной неопределенности. На основе предложенной модели ЛФР получены новые критические параметры перфтороктана: критическая плотность, кг/м3, критическая температура, К. Для диапазона от тройной до критической точки разработаны термодинамические таблицы, включающие , , , r*, r.
Ключевые слова
средний диаметр линия упругости теория ренормализационной группы линия насыщения перфтороктан уравнение Клапейрона – Клаузиуса
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Wu A.-L., Chuang L.-H., Chen K.-J. et al. // Int. Ophthalmol. 2019. V. 39. P. 2767.
  2. 2. Dias A.M.A., Caco A.I., Coutinho J.A.P. et al. // Fluid Phase Equilib. 2004. V. 225. P. 39–47.
  3. 3. Kreglewski A. Bulletin de L’academie Polonaise des Sciences X. 1962. P. 629–631.
  4. 4. Nelson W.M., Tebbal Z., Naidoo P. et al. // Fluid Phase Equilib. 2016. V. 408. P. 33–37.
  5. 5. Промышленные фторорганические продукты: Справ. изд. / Б.Н. Максимов, В.Г. Барабанов, И.Л. Серушкин и др. Л.: Химия, 1990. 445 с.
  6. 6. Хайрулин Р.А., Станкус С.В. // Журн. физ. химии. 2021. Т. 95. C. 529.
  7. 7. Мустафаев М.Р., Назиев Я.М., Каграманов М.К. // Теплофизика высоких температур. 1995. Т. 33. С. 359.
  8. 8. Синицын Е.Н., Михалевич Л.А., Янковская О.П. и др. Теплофизические свойства фторорганических соединений. Экспериментальные данные и методы расчета: Справочник. Екатеринбург: Наука, 1995. 178 с.
  9. 9. Dias A.M.A., Pàmies J.C., Coutinho J.A.P. et al. // J. Phys. Chem. B. 2004. V. 108. P. 1450–1457.
  10. 10. Kroenlein K. NIST ThermoData Engine, Thermodynamics Research Center (TRC), National Institute of Standards and Technology, USA, 2015.
  11. 11. Vandana V., Rosenthal D., Teja A. // Fluid Phase Equilibr. 99 (1994) 209–218.
  12. 12. AspenTech, Aspen Technology, Massachusetts, USA, 2010.
  13. 13. Bengesai P.N., Nelson W.M., Naidoo P., Ramjugernath D. // J. Chem. Eng. Data. 2016. V. 61. P. 3363.
  14. 14. Bengesai P. // A thesis for the degree Master of Science in Engineering (Chemical Engineering) in the College of Agriculture, Engineering and Science. University of KwaZulu-Natal, Durban. 2016. 134 p.
  15. 15. Hassanalizadeh R., Nelson W.M., Naidoo P. et al. // Fluid Phase Equilib. 2019. V. 485. P. 146.
  16. 16. Morgado P., Colaço B., Santos V. et al. // Molecular Physics. 2020. P. 118. P. e1722270.
  17. 17. Рыков С.В., Кудрявцева И.В., Рыков В.А. и др. // Вестн. Международной академии холода. 2021. № 2. С. 98.
  18. 18. Рыков С.В., Кудрявцева И.В., Рыков В.А. // Холодильная техника. 2017. № 3. С. 26.
  19. 19. Рыков С.В., Кудрявцева И.В., Рыков В.А. и др. // Вестн. Международной академии холода. 2019. № 3. С. 87.
  20. 20. Rykov S.V., Kudriavtseva I.V., Sverdlov A.V., Rykov V.A. // AIP Conf. Proc. 2020. V. 2285. P. 030070.
  21. 21. Рыков С.В., Кудрявцева И.В., Попов П.В., Нурышева М. // Вестн. Международной академии холода. 2021. № 3. С. 65.
  22. 22. Kudryavtseva I.V., Rykov V.A., Rykov S.V., Ustyuzhanin E.E. // J. Phys.: Conf. Ser. 2019. V. 1385. P. 012010.
  23. 23. Wang L., Zhao W., Wu L. et al. // J. Chem. Phys. 2013. V. 139. P. 124103.
  24. 24. Zhou Z., Cai J., Hu Y. // Molecular Physics. 2022. V. 120. P. e1987541.
  25. 25. Анисимов М.А. Критические явления в жидкостях и жидких кристаллах. М.: Наука, 1987. 272 с.
  26. 26. Rykov S.V., Kudryavtseva I.V., Rykov V.A. et al. // J. Phys.: Conf. Ser. 2019. V. 1147. P. 012017.
  27. 27. Рыков С.В., Кудрявцева И.В., Рыков В.А. и др.// Вестн. Международной академии холода. 2022. № 4. С. 76.
  28. 28. Stankus S.V., Khairulin R.A. // Int. J. Thermophys. 2006. V. 27. P. 1110–1122.
  29. 29. Хайрулин Р.А., Абдуллаев Р.Н., Станкус С.В. // Журн. физ. химии. 2017. Т. 91. № 10. С. 1719.
  30. 30. Frenkel M., Chirico R.D., Diky V. et al. NIST ThermoData Engine 6.0, National Institute of Standards and Technology; NIST Applied Chemicals and Materials Division: Thermodynamics Research Center (TRC), 2005.
  31. 31. Ermakov G.V., Skripov V.P. // Russ. J. Phys. Chem. 1967. V. 41. P. 39.
  32. 32. Ермаков Г.В., Скрипов В.П. Теплофизика. Вып. 1. Тр. отд. физ.-техн. проблем Уральского научного центра АН СССР. Свердловск, 1971.
  33. 33. Хайрулин Р.А., Станкус С.В. // Вестн. СибГУТИ. 2009. № 3. С. 117.
  34. 34. Форсайт Дж., Малькольм Н., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980. 280 с.
  35. 35. Vorob’ev V.S., Ochkov V.F., Rykov V.A. et al. // J. Phys.: Conf. Ser. 2019. V. 1147. P. 012016.
  36. 36. Garrabos Y., Lecoutre C., Marre S. et al. // Phys. Rev. E. 2018. V. 97. P. 020101(R).
  37. 37. Dykyj J., Svoboda J., Wilhoit R.C. et al. Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds. Springer, Berlin, 1999. 373 p.
  38. 38. Majer V., Svoboda V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications. Oxford, 1985. 300 p.
  39. 39. Stephenson R.M., Malanowski S. Handbook of the Thermodynamics of Organic Compounds. 1987. https://doi.org/10.1007/978-94-009-3173-2
  40. 40. Varushchenko R.M., Bulgakova L.L., Minzabekyants P.S., Makarov K.N. // Russ. J. Phys. Chem. 1981. V. 55. P. 1480.
  41. 41. Vorob’ev V.S., Ustyuzhanin Е.Е., Ochkov V.F. et al. // High Temp. 2020. V. 58. P. 333–341.
  42. 42. Шпильрайн Э.Э. // Теплофизика высоких температур. 1966. Т. 4. С. 450–451.
  43. 43. Клецкий А.В. Исследование и описание взаимосогласованными уравнениями состояния термодинамических свойств и вязкости холодильных агентов // Автореф. дис. ... уч. ст. доктора техн. наук. Л.: ЛТИХП, 1978. 48 с.
  44. 44. Рыков С.В., Кудрявцева И.В. // Журн. физ. химии. 2022. Т. 96. С. 1421–1427.
  45. 45. https://f2chemicals.com/pdf/sds/Perfluoro-n-octane (307-34-6).pdf
  46. 46. https://webbook.nist.gov/cgi/inchi?ID=C307346 &Mask=4#Thermo-Phase
  47. 47. Beilsteins Handbuch der Оrganischen Chemie. 4 Aufl. Br. 1. Berlin: Springer-Verlag, 1918. 984 s.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека