- Код статьи
- 10.31857/S0044453724070032-1
- DOI
- 10.31857/S0044453724070032
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 98 / Номер выпуска 7
- Страницы
- 21-28
- Аннотация
- Методом функционала плотности с использованием B3LYP в базисах 6–31G(d, p), 6–31G минимизированы энергии и построены структурно динамические модели глицината и тирозината магния. Рассчитаны геометрические параметры, и частоты нормальных колебаний в гармоническом приближении в ИК-спектре моделей представленных соединений. Осуществлен синтез комплекса магния(II) с глицином и тирозином из водных растворов хлорида магния и соответствующих аминокислот. Содержание аминокислот в синтезированных соединениях определяли формольным титрованием по методу Серенсена. Содержание ионов магния(II) – комплексонометрическим титрованием. Представлены ИК-спектры синтезированных соединений, измеренные в диапазоне 500–4000 см–1. Интерпретированы расчетные и экспериментальные ИК-спектры синтезированных соединений. Проведено сравнение расчетных ИК-спектров со спектрами синтезированных соединений, сделаны выводы о их строении. Данные о координации соединений ионов магния с АК, могут помочь достоверно установить строение их малоизученных комплексов, а также совершенствовать методы синтеза данных комплексных соединений заранее определенного состава.
- Ключевые слова
- Метод функционала плотности глицинат магния тирозинат магния ИК-спектр синтез
- Дата публикации
- 12.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Добрынина Н.А. Бионеорганическая химия. М.: МГУ, 2007. 36 с.
- 2. Скальный А.В. Химические элементы в физиологии и экологии человека. М.: Издательский дом «ОНИКС 21 век»: Мир, 2004. 216 с.
- 3. Юдина Н.В., Торшин И.Ю., Громова О.А., и др. // Кардиология. 2016. Т. 56. № 10. С. 80. DOI: https://dx.doi.org/10.18565/cardio.2016.10.80-89
- 4. Senni K., Foucault-Bertaud A., Godeau G. // Magnes Res. 2003 V. 16. № 1. P. 70.
- 5. Левчук Л.В., Бородулина Т.В., Санникова Н.Е., и др. // Уральский медицинский журнал. 2017. Т. 149. № 5. С. 11.
- 6. Шилов А.М., Авшалумов А.Ш., Марковский В.Б., и др. // Русский медицинский журнал. 2009. Т. 17. № 8. С. 576.
- 7. Golovanova О.A., Solodyankina A.A. // J. Crystallography Reports. 2017. V. 62. № 2. P. 342.
- 8. Abiri B., Vafa M. // Trials. 2020. V.21. № 1. P. 225 DOI: https://doi.org/10.1186/s13063-020-4122-9
- 9. Waheed E.J., Obaid S.M., Ali-Abbas A.A.S // Research J.of Pharmaceutical, Biological and Chemical Sciences. 2019. V.10. № 2. P. 1624.
- 10. Golovanova O.A., Tomashevsky I.A. // Rus. journal of Phys. Chem. 2019. V. 93. № 1. P. 7. DOI: https://doi.org/10.1134/S0036024419010084
- 11. Seelig M.S. // J. Am. College of Nutrition. 1993. V. 12. P. 442. DOI: 10.1080/07315724.1993.10718335
- 12. Накоскин А.Н., Воронцов Б.С., Лунева С.Н., и др. // Современные проблемы науки и образования 2012. № 3. С. 3.
- 13. Babkov L.M., Moiseikina E.A., Korolevich M.V. // J. of Applied Spectroscopy. 2010. V. 77. № 2. P. 166. DOI: https://doi.org/10.1007/s10812-010-9310-z
- 14. Бутырская Е.В., Нечаева Л.С., Шапошник В.А, и др. // Сорбционные и хроматографические процессы. 2012. Т. 12. № 4. С. 501.
- 15. Kon V. // UFN. 2002. V. 172. № 3. P. 336. DOI: 10.3367/UFNr.0172.200203e.0336
- 16. Mamand D., Qadr H. // Russian journal of physical chemistry. 2022. V. 96. P. 2155. DOI: https://doi.org/10.1134/S0036024422100193
- 17. Игнатов С.К. // Нижний Новгород: ННГУ им. Н.И. Лобачевского. 2019. 94 с.
- 18. Bespalov D.V., Golovanova O.A. // J. Butlerov Communications. 2021. V.65. № 1. P. 15. DOI: https://doi.org/10.37952/ROI-jbc-01/21-65-1-15