RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Термодинамические свойства титаната гадолиния Gd₂Ti₂O₇

PII
10.31857/S0044453724110058-1
DOI
10.31857/S0044453724110058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 11
Pages
40-47
Abstract
Журнал физической химии, Термодинамические свойства титаната гадолиния Gd₂Ti₂O₇
Keywords
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Kramer S.A., Tuller H.L. // Solid State Ionics. 1995. V. 82. P. 15. https://doi.org/10.1016/0167-2738 (95)00156-Z.
  2. 2. Wang Z., Wang X., Zhou G., et al. https://www.sciencedirect.com/science/article/pii/S0955221919302420// J. Europ. Ceram. Soc. 2019. V. 39. P. 3229. https://doi.org/10.1016/j.jeurceramsoc.2019.04.018.
  3. 3. Lumpkin G.R., Pruneda M., Rios S., et al. // J. Solid State Chem. 2007. V. 180. P. 1512. doi:10.1016/j.jssc.2007.01.028.
  4. 4. Vassen R., Jarligo M.O., Steinke T., et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. doi:10.1016/j.surfcoat.2010.08.151
  5. 5. Schiffer P., Ramirez A.P. // Comments Condens. Matter Phys. 1996. V. 18. P. 21.
  6. 6. Lecheminant P., Bernu B., Lhuillier C., et al. // Phys. Rev. Lett. 1998. V. 80. P. 2933. https://doi.org/10.1103/PhysRevLett.80.2933
  7. 7. Villain J. // Z. Phys. B. 1979. V. 33. P. 31. https://doi.org/10.1007/BF01325811
  8. 8. Reimers J.N., Berlinsky A.J., Shi A.-C. // Phys. Rev. B. 1991. V. 43. P. 865. https://doi.org/10.1103/PhysRevB.43.865
  9. 9. Moessner R., Chalker J.T. // Phys. Rev. Lett. 1998. V. 80. P. 2929. https://doi.org/10.1103/PhysRevLett.80.2929
  10. 10. Farmer J.M., Boatner L.A., Chakoumakos B.C., et al. // J. Alloys Compd. 2014. V. 605. P. 63. http://dx.doi.org/10.1016/j.jallcom.2014.03.153
  11. 11. Raju N.P., Dion M., Gingras M.J.P., et al. // Phys. Rev. B. 1999. V. 59(22). P. 14489.
  12. 12. Ramirez A.P., Shastry B.S., Hayashi A., et al. // Phys. Rev. Lett. 2002. V. 89(6). P. 067202–1. DOI:10.1103/PhysRevLett.89.067202
  13. 13. Janssen A., Pöml P., Beneš O., et al. // J. Chem. Thermodyn. 2009. V. 41. P. 1049. DOI:10.1016/j.jct.2009.04.011
  14. 14. Denisova L.T., Chumilina L.G., Ryabov V.V., et al. // Inorg. Mater. 2019. V. 55(5). P. 477. DOI: 10.1134/S0020168519050029
  15. 15. Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V. 177. P. 1858. DOI:10.1016/j.jssc.2004.01.009
  16. 16. Reznitskii L.A. // Inorg. Mater. 1993. V. 29(9). P. 1310.
  17. 17. Kowalski P.M. // Scripta Mater. 2020. V. 189. P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
  18. 18. Rosen P.F., Woodfield B.F. https://www.sciencedirect.com/science/article/pii/S002196141930730X// J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
  19. 19. Sabbah R., Xu-wu A., Chickos J.S., et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031 (99)00009-X
  20. 20. Ryumin M.A., Nikiforova G.E., Tyurin A.V., et al. // Inorg. Mater. 2020. V. 56. P. 97. https://doi.org/0.1134/S0020168520010148
  21. 21. М.А. Рюмин, Г.Е. Никифорова, А.В. Тюрин и др. // Неорган. Материалы. 2020. Т. 56. С. 102.
  22. 22. Prohaska T., Irrgeher J., Benefield J., et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603.
  23. 23. Clarke D.R. // Surf. Coat. Technol. 2003. V. 163. P. 67. https://doi.org/10.1016/S0257-8972 (02)00593-5
  24. 24. Chernyshev V.A., Petrov V.P., Nikiforov A.E. // Phys. Solid State. 2015. V. 57. No. 5. P. 996. DOI: 10.1134/S1063783415050078.
  25. 25. Westrum E.F., Jr. // J. Chem. Thermodyn. 1983. V. 15. P. 305. https://doi.org/10.1016/0021-9614 (83)90060-5
  26. 26. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  27. 27. Voronin G.F., Kutsenok I.B. https://pubs.acs.org/doi/10.1021/je400316m// J. Chem. Eng. Data 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  28. 28. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  29. 29. Waring J.L., Schneider S.J. // J. Res. Natl. Bur. Stand. A. Phys. Chem. 1965. V. 69A(3). P. 255. doi:10.6028/jres.069A.025
  30. 30. Smith S.J., Stevens R., Liu Sh., et al. // Am. Mineral. 2009. V. 94. P. 236. DOI: 10.2138/am.2009.3050
  31. 31. Kandan R., Prabhakara Reddy B., Panneerselvam G., Nagarajan K. // J. Therm. Anal. Calorim. 2016. V. 124. P. 1349. DOI 10.1007/s10973-016-5272-6
  32. 32. Könings R.J.M., Beneš O., Kovács A., et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. DOI: 10.1063/1.4825256
  33. 33. Hayun S., Navrotsky A. // J. Solid State Chem. 2012. V. 187. P. 70. DOI:10.1016/j.jssc.2011.12.033
  34. 34. Panneerselvam G., Venkata Krishnan R., Antony M.P., et al. // J. Nucl. Mater. 327 (2004) 220.
  35. 35. Термические константы веществ. Справочник под ред. В.П. Глушко. Москва 1965–1982. http: // www.chem.msu.ru.
  36. 36. M.W. Chase, Jr. NIST-JANAF Thermochemical Tables. 4th ed. American Chemical Society. 1998.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library