RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

PHOTOCATALYTIC OXIDATIVE DEGRADATION OF DICLOFENAC IN WATER USING IRON-CONTAINING METAL-CERAMIC COMPOSITES UNDER IRRADIATION AND OZONATION CONDITIONS

PII
80044453725060157-1
DOI
10.31857/80044453725060157
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
952-963
Abstract
The photocatalytic activity of iron-containing silicon nitride-based metal-ceramic composites in the process of oxidative degradation of the pharmaceutical pollutant diclofenac (DCF) has been investigated. The composites were obtained by nitriding ferrosilicon without additives and ferrosilicon with shungite (modifier for SiC production) in combustion mode. It is noted that the use of urea allows to additionally modify the ceramic matrix of composites with semiconducting phases (FeO, CN) capable of absorption in the region of near-UV and visible light. The phase composition has been established, morphological features and optical properties of the composites have been studied. The acid-base properties of the surface have been evaluated. Adsorption and catalytic activity of composites in the absence and with HO addition under UV irradiation (Fenton photochemical process), under ozonation conditions under UV and visible light irradiation were studied. The highest degree of DCF degradation was found when heterogeneous photocatalysis and Fenton process were combined (84%) and under photocatalytic ozonation conditions (88%). The kinetics of photocatalytic degradation of DCF was investigated using a pseudo-first-order model. The degradation products of DCF were determined GC—MS.
Keywords
железосодержащие металлокерамические композиты гетерогенный фотокатализ процесс Фентона фотокаталитическое озонирование диклофенак
Date of publication
06.12.2024
Year of publication
2024
Number of purchasers
0
Views
13

References

  1. 1. Hernández-Tenorio R., González-Juárez E., Guzmán-Mar J.L. et al. // J. of Hazardous Materials Advances. 2022. V. 8. P. 100172. https://doi.org/10.1016/j.hazadv.2022.100172
  2. 2. O’Flynn, D., Lawler J., Yusuf A. et al. // Anal. Methods. 2021. V. 13. P. 575. https://doi.org/10.1039/D0AY02098B
  3. 3. Tiedelen E.J., Tahar A., McHugh B. et al. // Science of The Total Environment. 2017. V. 574 P. 1140. https://doi:10.1016/j.scitotenv.2016.09.084
  4. 4. Fernandes J.P., Almeida C.M.R., Salgado M.A. et al. // Toxics. 2021. V. 9. P. 257. https://doi:10.3390/toxics9100257
  5. 5. Wilkinson J.L., Boxall A.B.A., Kolpin D.W. et al. // Proceedings of the National Academy of Sciences. 2022. V. 119. № 8. P. 2113947119. https://doi:10.1073/pnas.2113947119
  6. 6. Guillossou R., Le Roux J., Mailler R. et al. // Chemosphere. 2019. V. 218. P. 1050. https://doi:10.1016/j.chemosphere.2018.11.182
  7. 7. Ma D., Yi H., Lai C. et al. // Ibid. 2021. V. 275. P. 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
  8. 8. Suhag M.H., Khatun A., Tateishi I. et al. // ACS Omega. 2023. V. 8. P. 11824. https://doi.org/10.1021/acsomega.2c06678
  9. 9. Yu Y., Yan L., Cheng J. et al. // Chemical Engineering Journal. 2017. V. 325 P. 647. https://doi.org/10.1016/j.ccj.2017.05.092
  10. 10. Ershov D.S., Besprozyannykh N.V., Sinel’shehikova O.Y. // Russ J. Inorg. Chem. 2022. V. 67. P. 105. https://doi.org/10.1134/S003602362201003X
  11. 11. Zhang L., Hao J., Jia Z. et al. // J. Solid State Chem. 2023. V. 325. P. 124167. https://doi.org/10.1016/j.jssc.2023.124167
  12. 12. Su S., Xing Z., Zhang S. et al. // Appl. Surf. Sci. 2021. V. 537. P. 147890. https://doi.org/10.1016/j.apsusc.2020.147890
  13. 13. Sonhtag C., Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. [S.I.]: IWA Publishing, 2012. 320 p.
  14. 14. Li X., Chen W., Tang Y. et al. // Chemosphere. 2018. V. 206. P. 615. https://doi.org/10.1016/j.chemosphere.2018.05.066
  15. 15. Moreira N.F.F., Sousa J.M., Macedo G. et al. // Water Res. 2016. V. 94. P. 10. https://doi.org/10.1016/j.watres.2016.02.003
  16. 16. Valério A., Wang J., Tong S. et al. // Chem. Eng. Process. 2020. V. 149. P. 107838. https://doi.org/10.1016/j.cep.2020.107838
  17. 17. Camera-Roda G., Loddo V., Palmisano L. et al. // Appl. Catal. B: Environ. 2019. V. 253. P. 69. https://doi.org/10.1016/j.apcatb.2019.04.048
  18. 18. Skvortsova L.N., Kazantseva K.I., Bolgar K.A. et al. // Rev. and adv. in chem. 2022. V. 12. P. 289. https://doi.org/10.1134/S2634827623700137
  19. 19. Sadhishkumar P., Meena R.A.A., Palanismi T. et al. // Sci. Total Environ. 2020. P. 134057. https://doi.org/10.1016/j.scitotenv.2019.134057
  20. 20. Simon E., Duffek A., Stahl C. et al. // Environ. Int. 2022. V. 159. P. 107033. https://doi.org/10.1016/j.envint.2021.107033
  21. 21. Zhu J., Zhang G., Xian G. et al. // Front. Chem. 2019. V. 7. P. 796. https://doi.org/10.3389/fchem.2019.00796
  22. 22. Vitiello G., Iervolino G., Imparato C. et al. // Sci. Total. Environ. 2021. V. 762. P. 143066. doi:10.1016/j.scitotenv.2020.143066
  23. 23. Conte F., Tommasi M., Degrell S.N. et al. // ChemPhotoChem. 2023. V. 8. P. 202300177. https://doi.org/10.1002/cptc.202300177
  24. 24. Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. СПб.: Лань, 2021. 284 с.
  25. 25. Bauer J. // Phys. Status Solidi. 1977. V. 39. № 2. P. 411. http://dx.doi.org/10.1002/pssa.2210390205
  26. 26. Cornell R.M., Schwermann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. [S.I.]: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. 664 p.
  27. 27. Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001. 216 p.
  28. 28. Patnaik S.P., Behera A., Martha S. et al. // J. Mater. Sci. 2019. V. 54. P. 5726. https://doi:10.1007/s10853-018-03266-x
  29. 29. Oppenlander T. Photochemical purification of water and air. Weinheim: Wiley-VCH, 2007. 368 c.
  30. 30. Smadil A., Berkani M., Merouane F. et al. // Chemosphere. 2021. V. 266. P. 129158. https://doi.org/10.1016/j.chemosphere.2020.129158
  31. 31. Bulyga D.V., Evstropiev S.K. // Optics and Spectroscopy. 2022. V. 130. № 9. P. 1176. http://dx.doi.org/10.21883/EOS.2022.09.54839.3617-22
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library