_____ ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ ___ МОДЕЛИРОВАНИЕ

УДК 536.4

МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МАГНИЯ В СХЕМЕ МОДЕЛИ ПОГРУЖЕННОГО ATOMA

© 2023 г. Д. К. Белащенко^{а,*}

^а Национальный исследовательский технологический университет "Московский институт стали и сплавов", Москва, Россия

*e-mail: dkbel75@gmail.com

Поступила в редакцию 07.08.2022 г. После доработки 07.08.2022 г. Принята к публикации 02.09.2022 г.

Предложены потенциалы модели погруженного атома (EAM) для твердого и жидкого магния и исследованы свойства магния методом молекулярной динамики (МД) на бинодали до 1500 К, а также в условиях статического и ударного сжатия. Рассчитаны основные характеристики ОЦК и жидкого магния (структура, плотность, энергия, сжимаемость, скорость звука, коэффициенты самодиффузии). Рассчитаны изотерма статического сжатия при 298 К до давления 108 ГПа, и адиабата Гюгонио до давления 80 ГПа с учетом электронных вкладов. Найдены значения избыточной энергии поверхности нанокластеров магния с числом частиц от 13 до 2869, и проведена оценка уравнения Гиббса—Гельмгольца для связи поверхностного натяжения с поверхностной энергией.

Ключевые слова: магний, молекулярная динамика, бинодаль, статическое, ударное сжатие, EAM, (Многочастичный потенциал EAM) MEAM, свойства

DOI: 10.31857/S004445372303007X, EDN: DWGSCG

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ДЛЯ МАГНИЯ

Магний — это металл с довольно высоким давлением пара. Температура плавления магния 923 К. Температура кипения магния равна всего 1363 К [1]. Поэтому опытные данные для плотности жидкого Мд получены в сравнительно нешироком диапазоне температур [2-5]. Для наших расчетов использованы ниже данные [5], полученные при температурах до 1244 К методом поглощения гамма-лучей. Значения плотности при температурах до 1500 К найдены экстраполяцией данных [5]. Плотность, сжимаемость и структурные характеристики магния измерены в [6]. Структура жидкого Мд при обычном давлении исследована методом дифракции рентгеновских лучей при температурах 953, 1063 и 1153 К [7] и нейтронов [8], а также молекулярно-динамическими (МД) расчетами методом ab initio при 200— 1700 K [9].

Свойства магния при 300 К и высоких давлениях исследованы дифракционным методом при статическом сжатии до давления 221 ГПа [10] и 18.5 ГПа [11]. При 300 К ГПУ-фаза магния существует до ~55 ГПа, а при ~46 ГПа наряду с ГПУ-

фазой появляется ОЦК-фаза, которая остается устойчивой до 221 ГПа. Эти данные на изотерме 300 К описываются уравнением Берча—Мурнагана:

$$Z = (1 + B_0' p / B_0)^{1/B0'}.$$
 (1)

Здесь p и V — давление и мольный объем, $Z = V_{00}/V$. Для ГПУ-фазы хорошо подходят параметры $V_{00} = 14.149$ см³/моль, $B_0 = 30.4(5)$ ГПа и $B_0' = 4.39(8)$, а для ОЦК-фазы $V_{00} = 13.07(9)$ см³/моль, $B_0 = 45(8)$ ГПа и $B_0' = 3.8(1)$ [10].

Экспериментальных данных о сжимаемости магния немного. Для ГПУ-магния при 300 К справочники дают модуль всестороннего сжатия $K_T=35.2$ ГПа [12, 13]. Изотермическую сжимаемость жидкого магния β_T можно рассчитать по формуле для нулевого предела структурного фактора $S(K)=(N/V)\beta_TkT$, где N/V — число частиц в единице объема, а k — постоянная Больцмана. Нулевой предел S(0) при 953 К равен 0.0263 [7] и при плотности 1.545 г/см³ находим модуль всестороннего сжатия $K_T=1/\beta_T=19.1$ ГПа. Скорость звука в жидком Мg измеряли в [14]. Расчеты [15] по данным [14] дают вблизи от температуры плавления модуль всестороннего сжатия $K_T=19.8$ ГПа.

Данные о самодиффузии в жидком магнии получены методом *ab initio* [9], где также исследована нуклеация Mg при температурах 350—820 K.

Эксперименты по ударному сжатию магния проведены в серии работ 1962—1989 гг. до давления 79 (см. базу данных в [16]). Для конкретных расчетов ниже использовали данные компендиума [17].

ТЕОРЕТИЧЕСКИЕ РАСЧЕТЫ СВОЙСТВ МАГНИЯ

Первые молекулярно-динамические (МД) расчеты свойств жидкого магния проводились с аппроксимацией межчастичного взаимодействия потенциалом Леннард-Джонса [18] (структура, автокорреляционные функции), а также псевдопотенциальным методом [19–21] (структура, диффузия, вязкость, автокорреляционные функции). Молекулярно-динамическое исследование жидкого Mg (а также Be, Ca, Sr, Ba) проведено псевдопотенциальным методом в [19, 21]. Некоторые термодинамические свойства переохлажденного магния и цинка рассчитаны этим методом в [22]. Значительный прогресс был достигнут при применении модели погруженного атома (Embedded Atom Model - EAM), на основе которой были построены модели большого числа кристаллических и ряда жидких металлов [23]. Для магния и его сплавов также были предложены потенциалы ЕАМ и рассчитаны основные свойства моделей [24-40]. В [41] рассмотрели достоинства и недостатки предложенных ранее потенциалов ЕАМ для Ве, предложили потенциал ЕАМ с парным вкладом и потенциалом погружения достаточно простого вида и получили согласие со свойствами твердого Ве для энергии, упругих свойств и характеристик вакансий Ве. Далее была предложена модифицированная модель ЕАМ-МЕАМ, в которую включен учет возможной угловой зависимости эффективной электронной плотности, создаваемой атомом в окружающем пространстве [24, 42]. МЕАМ была применена, в частности, для расчета свойств металлов 2-й группы — бериллия, магния, кальция, бария [21, 24, 25, 41, 43, 44] и цинка [45], а также Li, Sn, Ni и др. В [25] с помощью потенциала МЕАМ рассчитана изотерма сжатия магния до степени сжатия Z = 1.7.

В исходном варианте потенциала МЕАМ учитывались только ближайшие соседи данного атома. Далее было предложено учитывать не только ближайших соседей, но и следующих за ними — вариант 2NN MEAM (Ni, Sn, сплавы Sn—Pb [46—49], Li [50, 51] и др.). Другой вариант учета угловой зависимости потенциала был предложен в [32] и применен для моделирования упругих, теп-

лофизических и диффузионных свойств кристаллического магния и растворов Mg—H.

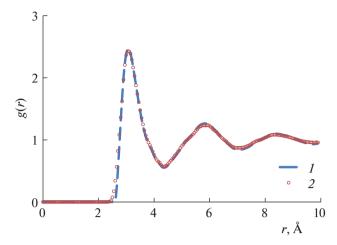
В случае жидкого металла угловая зависимость потенциала маловероятна из-за изотропности жидкости. По данным [51], существенная разница расчетных свойств жидкого лития в вариантах 2NN MEAM и EAM обнаружена не была.

Было показано, что EAM недостаточно хороша для описания температурных зависимостей свойств [52]. Кроме того, потенциал EAM накладывает некоторые условия на соотношения компонент тензора упругих напряжений. Чтобы снять эти условия, в [53] предложен вариант EAM (для Ti, Mg и Zn), в котором плотность эффективного заряда ρ_i зависит от окружения i-го атома. Этот вариант позволяет улучшить описание свойств поверхности.

Целый ряд свойств жидких Ве, Мg, Са и Ва был рассчитан методом *ab initio* [9, 21, 25, 41, 44, 54–57]. В [24, 25, 43] был применен потенциал МЕАМ, а также *ab initio*, и получено согласие с упругими свойствами реальных кристаллических Ве и Мg, а также с зависимостью температуры плавления и скорости звука вдоль адиабаты Гюгонио.

Многочастичный потенциал EAM. В большинстве отмеченных выше работ рассматривались свойства кристаллического магния, а для жидкого магния были получены лишь неполные данные. В случае жидких и аморфных металлов с изотропной структурой хорошие результаты дает применение сферически-симметричного потенциала EAM, не включающего угловые переменные. Поэтому для жидкого магния ниже разработан специальный потенциал EAM и дано сравнение результатов моделирования с опытом.

Потенциал ЕАМ имеет вид:


$$U = \sum_{i} \Phi(\rho_i) + \sum_{i < j} \varphi(r_{ij}), \qquad (2)$$

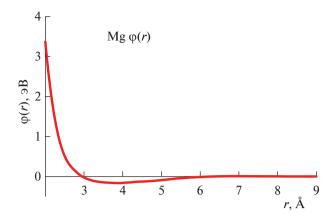
где U — потенциальная энергия системы, $\Phi(\rho_i)$ — потенциал погружения i-го атома, зависящий от "эффективной электронной плотности" ρ в месте нахождения центра атома, а вторая сумма по парам атомов — парный вклад — содержит обычный парный потенциал $\phi(r)$. Эффективная электронная плотность в точке нахождения атома создается окружающими атомами и определяется по формуле:

$$\rho_i = \sum_j \psi(r_{ij}), \tag{3}$$

где $\psi(r_{ij})$ — вклад в эффективную электронную плотность от соседа номер j.

В [58] показано, что обычно в металлах средние значения эффективной плотности на разных атомах ρ_i мало отличаются. В этом случае потенциал EAM сводится к эффективному парному по-

Рис. 1. Парная корреляционная функция (ПКФ) жидкого магния при 953 К: I — дифракционные данные [7], 2 — метод молекулярной динамики с потенциалом EAM-1. Невязка $R_{\rm g} = 0.043$.


тенциалу с зависящими от температуры коэффициентами. Эту зависимость можно регулировать, изменяя форму функции $\psi(r)$ (экспонента, полином и т.д.).

Парный вклад в потенциал EAM. В настоящей работе потенциал EAM-1 для магния был рассчитан методикой, описанной в [59—61]. Парный вклад в потенциал $\varphi(r)$ был найден с помощью алгоритма Шоммерса [62] по гистограмме дифракционной парной корреляционной функции (ПКФ) магния при 953 К [7, 63]. Эта ПКФ показана на рис. 1. Значения потенциала можно рассчитать этим алгоритмом на расстояниях, не меньших минимального межатомного ~2.75 Å, встречающегося в жидком магнии. Модель жидкого магния при 953 К, построенная методом МД при нулевом давлении, имела плотность 1.550 г/см³. Реальная плотность при этом равна 1.551 г/см³ [5].

При сравнении двух графиков аналогичных функций можно использовать среднее квадратичное отклонение R_g ("невязку") между ними. В случае задания двух $\Pi K\Phi g_1(r_j)$ и $g_2(r_j)$ в виде гистограмм это отклонение вычисляется по формуле:

$$R_g = \left\{ \frac{1}{n_2 - n_1 + 1} \sum_{n_1}^{n_2} [g_1(r_j) - g_2(r_j)]^2 \right\}^{1/2}.$$
 (4)

Здесь n_1 и n_2 — номера точек гистограмм ПКФ, между которыми вычисляется невязка. Алгоритм Шоммерса позволяет по заданной ПКФ жидкости построить модель с невязкой порядка 0.01. При хорошей аппроксимации потенциала невязка R_g составляет обычно 0.01—0.05, а величины свыше 0.06 или отсутствие данных по R_g указывают на недостаточную адекватность модели. В

Рис. 2. Парный вклад $\phi(r)$ в потенциал EAM-1, найденный при 953 К алгоритмом Шоммерса по ПКФ магния из [7].

работах автора значения невязок ПКФ-моделей всегда указываются для оценки адекватности потенциалов. В случае Mg при 953 K за 116 итераций Шоммерса была получена невязка $R_g = 0.030$. При невязке $R_g < 0.04$ две ПКФ визуально неразличимы. Это видно на рис. 1.

Во многих случаях расчетные гистограммы парных вкладов в потенциал Шоммерса аппроксимируют кусочно-непрерывными полиномами. В этом случае происходит небольшая потеря точности и увеличивается невязка R_g (обычно — на 0.01-0.03). В случае магния в настоящей работе было принято использовать парный вклад в потенциал непосредственно в форме гистограммы.

При высоких давлениях атомы сближаются. Поэтому потенциал следует продолжить на область расстояний $0 < r \le 2.80$ Å, где алгоритм Шоммерса при обычном давлении не работает из-за недостатка нужных пар атомов. Вид потенциала на малых расстояниях можно определить по данным ударного сжатия (см. ниже). В итоге значения парного вклада на интервале 0.00-2.80 Å рассчитываются по формуле:

$$\varphi(r), \, 9B = 0.116089 + 0.872322(r_{\min} - r) + + 5.0(r_{\min} - r)^{3.50},$$
 (5)

где $r_{\text{min}} = 2.80$ Å. Радиус обрыва $\phi(r)$ равнялся 9.01 Å. Значения парного вклада приведены в табл. 1. Межчастичные силы $f(r) = -d\phi(r)/dr$ рассчитываются интерполяцией данных таблицы. Парный вклад в потенциал EAM-1 магния показан на рис. 2.

Таблица 1. Парный вклад в потенциал ЕАМ-1 магния

Таолица 1. 11	арный вклад в	потенциал ЕА	.М-1 магния				
r, Å	$\varphi(r)$, \ni B	r, Å	φ(<i>r</i>), эВ	r, Å	φ(<i>r</i>), эВ	r, Å	φ(r), эВ
2.7	0.208321	4.3	-0.136983	5.9	-0.018178	7.5	0.004290
2.75	0.160330	4.35	-0.133434	5.95	-0.016371	7.55	0.003789
2.8	0.116089	4.4	-0.130635	6	-0.013729	7.6	0.003579
2.85	0.069040	4.45	-0.128423	6.05	-0.010850	7.65	0.003342
2.9	0.032146	4.5	-0.127104	6.1	-0.008555	7.7	0.003271
2.95	0.000732	4.55	-0.125513	6.15	-0.006605	7.75	0.003055
3	-0.026064	4.6	-0.122740	6.2	-0.004652	7.8	0.003225
3.05	-0.048737	4.65	-0.119946	6.25	-0.003300	7.85	0.003138
3.1	-0.067574	4.7	-0.116759	6.3	-0.001492	7.9	0.003070
3.15	-0.084471	4.75	-0.113022	6.35	-0.000292	7.95	0.002795
3.2	-0.098273	4.8	-0.109034	6.4	0.001040	8	0.002936
3.25	-0.110766	4.85	-0.104724	6.45	0.002294	8.05	0.002326
3.3	-0.120170	4.9	-0.100277	6.5	0.002959	8.1	0.002006
3.35	-0.129439	4.95	-0.096416	6.55	0.003536	8.15	0.001492
3.4	-0.136658	5	-0.091524	6.6	0.004278	8.2	0.000908
3.45	-0.142760	5.05	-0.086633	6.65	0.005121	8.25	0.000431
3.5	-0.147388	5.1	-0.081468	6.7	0.005801	8.3	0.000310
3.55	-0.151228	5.15	-0.076327	6.75	0.006461	8.35	0.000082
3.6	-0.154321	5.2	-0.070824	6.8	0.007068	8.4	0.000109
3.65	-0.156963	5.25	-0.065643	6.85	0.007471	8.45	0.000056
3.7	-0.159175	5.3	-0.060370	6.9	0.007460	8.5	0.000043
3.75	-0.161377	5.35	-0.055337	6.95	0.007510	8.55	0.000003
3.8	-0.163670	5.4	-0.050762	7	0.007034	8.6	0.000041
3.85	-0.165258	5.45	-0.046851	7.05	0.006557	8.65	0.000175
3.9	-0.165390	5.5	-0.043016	7.1	0.006066	8.7	0.000076
3.95	-0.164172	5.55	-0.039870	7.15	0.005981	8.75	0.000040
4	-0.160973	5.6	-0.036345	7.2	0.006153	8.8	-0.000336
4.05	-0.156491	5.65	-0.033263	7.25	0.005581	8.85	-0.000372
4.1	-0.153217	5.7	-0.029835	7.3	0.005340	8.9	0.000238
4.15	-0.151357	5.75	-0.026435	7.35	0.004911	8.95	0.000238
4.2	-0.147933	5.8	-0.023596	7.4	0.004793	9	0.000000
4.25	-0.142232	5.85	-0.020579	7.45	0.004612	9.05	0.000000
-	·	•		•		•	

Потенциал погружения EAM-1. Потенциал погружения был аппроксимирован формулами:

$$\psi(r) = p_1 \exp(-p_2 r),$$

$$\Phi(\rho) = a_1 + c_1(\rho - \rho_0)^2 \quad \text{при} \quad \rho_1 \le \rho \le \rho_6,$$

$$\Phi(\rho) = a_i + b_i(\rho - \rho_{i-1}) + c_i(\rho - \rho_{i-1})^2$$

$$\text{при} \quad \rho_i \le \rho \le \rho_{i-1} \quad (i = 2, 3),$$

$$\Phi(\rho) = [a_4 + b_4(\rho - \rho_3) + c_4(\rho - \rho_3)^2] \times$$

$$\times [2\rho/\rho_3 - (\rho/\rho_3)^2] \quad \text{при} \quad \rho_4 \le \rho \le \rho_3,$$

$$\Phi(\rho) = a_7 + b_7(\rho - \rho_6) + c_7(\rho - \rho_6)^m$$

$$\text{при} \quad \rho_6 \le \rho \le \rho_7,$$

$$\Phi(\rho) = a_8 + b_8(\rho - \rho_7) + c_8(\rho - \rho_7)^n$$

$$\text{при} \quad \rho_7 \le \rho \le \rho_8,$$

$$\Phi(\rho) = a_9 + b_9(\rho - \rho_8) + c_9(\rho - \rho_8)^q$$

$$\text{при} \quad \rho_8 < \rho < \rho_9,$$

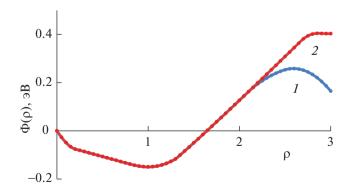
$$\Phi(\rho) = a_{10} + b_{10}(\rho - \rho_9) + c_{10}(\rho - \rho_9)^s$$

$$\text{при} \quad \rho > \rho_9,$$

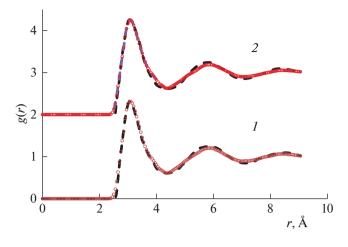
причем $\rho_0 = 1$, а при $\rho = \rho_i$ непрерывны сама функция $\Phi(\rho)$ и ее первая производная. Функция $\Phi(\rho)$ и все коэффициенты a, b и c выражаются в эВ. Координаты точек деления оси абсцисс возрастают в последовательности $\rho_4 - \rho_3 - \rho_2 - \rho_1 - \rho_0 \rho_6 - \rho_7 - \rho_8 - \rho_9$. В итоге потенциал EAM-1 определяется параметрами $p_1, p_2, a_1, c_1-c_{10}, \rho_1-\rho_9, m, n, q$, s. Подгонку проводили по зависимости плотности и энергии магния от температуры вдоль бинодали, а также по данным статического и ударного сжатия. Выражения при $\rho < \rho_0$ используются при моделировании состояний с нормальной и пониженной плотностью, а при $\rho > \rho_6 -$ для сжатых состояний. Параметр p_2 в (6) является подгоночным. Параметр p_1 определялся таким образом, чтобы получить для модели жидкости в "стандартном" состоянии (вблизи от точки плавления) среднее значение $\langle \rho \rangle = \rho_0 = 1$. В этом случае потенциал погружения не влияет на движение частиц, поскольку $d\Phi(\rho)/d\rho$ при $\rho \approx 1$ очень мало. Коэффициенты a_2 — a_{10} , b_2 — b_{10} рассчитываются таким образом, чтобы получить согласие по плотности моделей с реальными значениями [5] в широком интервале температур, с учетом условия непрерывности потенциала погружения и его производной в точках ρ_i .

Коэффициент c_I определяет величину модуля всестороннего сжатия K_T . Принимая модуль равным 19.1—19.8 ГПа, находим методом подбора коэффициент $c_1 = 0.3701$.

Значения коэффициентов потенциала погружения (с учетом данных статического сжатия, приведенных ниже) показаны в табл. 2.


Таблица 2. Коэффициенты разложения потенциала погружения EAM-1 магния

norpywennii Litar i marniin								
i	ρ_i	<i>а_i</i> , эВ	b_i , эВ	c_i , $\ni B$				
1	0.93	-0.15000	0.0000	0.3701				
2	0.80	-0.148187	-0.051814	0.2	2000			
3	0.20	-0.138071	-0.103814	0.0	0000			
4	0.00	-0.075782 -0.103814		0.0	0.0000			
6	1.30	_	_	_				
7	2.68	-0.116691	0.222060	0.13				
8	2.88	0.375024	0.369741	-0.80				
9	3.06	0.404821	-0.027622	0.1	0			
10	_	0.404039	0.015446	-0.26				
m	п	q	S	p_1	p_2			
1.10	1.80	1.85	1.15	3.476	1.200			


График потенциала погружения показан на рис. 3.

ПРОВЕДЕНИЕ РАСЧЕТОВ

Модели магния имели размер 2048 или 2000 атомов в основном кубе. Отдельные расчеты выполняли на моделях большего размера. Моделирование проводили алгоритмом Л. Верле с шагом $\Delta t = 0.01t_0$, где единица времени $t_0 = 5.018 \times 10^{-14}$ с. Применяли ансамбли *NVT* при реальной плотности магния [5] и *NpT* при давлении, близком к нулю. При расчетах учитывали электронные вклады в энергию и давление в модели свободных электронов (МСЭ), принимая два электрона на атом [59, 64]. Значения тепловой энергии электронов E_{eT} приведены в табл. 3. Электронный

Рис. 3. Потенциал погружения магния $\Phi(\rho)$, эВ: I - EAM-1, 2 - EAM-2.

Рис. 4. Штриховые линии — дифракционные ПКФ Mg [7], маркеры — ПКФ-моделей с потенциалом EAM-1: I-1063 K, невязка $R_g=0.037, 2-1153$ K, $R_g=0.040$.

вклад в давление p_{eT} рассчитывается по формуле $p_{eT}V = (2/3)E_{eT}$.

РЕЗУЛЬТАТЫ РАСЧЕТОВ ДЛЯ БИНОДАЛИ МАГНИЯ

В табл. 4 показаны результаты построения моделей методом МД. На рис. 1 и 4 показаны ПКФ моделей жидкого Мg при 953, 1063 и 1153 К и близком к нулю давлении. Невязки R_g между модельными и фактическими ПКФ [7] при T=953-1153 К невелики ($R_g \le 0.04$), так что дифракционные и модельные ПКФ практически совпадают даже при перегреве на 200 К. Причинами расхождений являются как возможные неточности потенциала EAM-1, так и обычная погрешность дифракционных данных, особенно на левом склоне первого пика ПКФ.

Результаты расчетов термодинамических свойств магния вдоль бинодали до 1500 К приведены в табл. 4. К энергии моделей следует добавить электронные вклады E_{eT} из табл. 3. Расчетная плотность жидкости отклоняется от фактической не более, чем на $0.014 \, \Gamma/\text{см}^3$, т.е. меньше, чем на ≤1% (2 и 3 колонки). Для твердой фазы ошибка немного выше. Электронные добавки в энергию и давление при температурах до 1500 К невелики и не превышают 1.22 кДж/моль и 0.05 ГПа. Метод ab initio (WASP) приводит к завышению плотности в интервале 953-1300 K на ~0.1 г/см³ [9]. Coгласие по энергии с данными опыта (6 и 8 колонки) в целом неплохое, но наблюдается небольшое занижение расчетных данных, которое постепенно увеличивается при нагреве до ~2 кДж/моль. Это расхождение может быть отчасти следствием неточности МСЭ или данных опыта.

Модуль всестороннего сжатия рассчитали по зависимости давления от объема при заданной температуре. Вблизи от точки плавления получено хорошее согласие с опытом (табл. 4, 9 и 10 колонки). При нагревании до 1500 К расчетный модуль убывает в 3 раза.

В табл. 5 приведены значения теплоемкостей C_v и C_p , рассчитанные методом МД. К ним надо добавить электронную теплоемкость C_{eT} . Зная теплоемкости и модуль всестороннего сжатия K_T (табл. 4), можно рассчитать скорость звука u по уравнению $u = [(K_T/d)(C_p/C_v)]^{1/2}$, где d- плотность. Значения u приведены в табл. 5. Вблизи от точки плавления они согласуются с экспериментальными данными [14, 15], а с повышением температуры наблюдается занижение до 8-9%. Причина занижения заключается в слишком быстром убывании расчетного модуля K_T -моделей при нагревании.

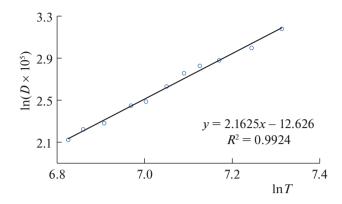
Таблица 3. Электронные вклады в энергию магния E_{eT} , кДж/моль, $V_0 = 13.968 \text{ см}^3/\text{моль}$

	$Z = V_0/V$										
<i>T</i> , K	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	
	E_{eT}										
298	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
1000	0.453	0.425	0.400	0.380	0.362	0.345	0.331	0.318	0.306	0.295	
2000	1.941	1.822	1.719	1.630	1.552	1.482	1.419	1.364	1.312	1.266	
3000	4.418	4.147	3.914	3.711	3.533	3.374	3.232	3.105	2.989	2.883	
5000	12.306	11.556	10.910	10.348	9.853	9.413	9.019	8.664	8.342	8.048	
8000	31.277	29.408	27.792	26.381	25.135	24.025	23.030	22.131	21.315	20.570	

Таблица 4. Расчетные свойства магния, полученные методом МД с потенциалом ЕАМ-1

	Плотност	гь, г/см ³	гь, г/см ³		Ε,	кДж/мо	ЭЛЬ	K	т, ГПа	D × 10	0 ⁵ , см ² /с
<i>T</i> , K	ЕАМ при <i>p</i> ~ 0	Опыт [5]	⟨ρ⟩	$R_{ m g}$	EAM-1	$E_{ m eT}$	Опыт [65]	EAM-1	Опыт	EAM-1	Опыт
1	2	3	4	5	6	7	8	9	10	11	12
298	1.786	1.740	1.192	_	-139.27	0	-140.91	35.40	34.6 [12] 35.2 [13]	_	_
600	1.721	1.692	1.137	_	-130.57	0.137	-132.87	28.15	_	_	_
800	1.667	1.659	1.092	_	-124.00	0.283	-126.99	23.13	_	_	_
850sol	1.643	1.650	1.076	_	-121.62	0.326	-125.44	_	_	_	_
921liq	1.563	1.558	1.007	_	-114.32	0.406	-114.65	19.26	19.4 ± 0.4 19.8 [14, 15]	8.35	5.63 [57] 5.77 [15]
953	1.556	1.551	0.998	0.043	-113.33	0.439	-113.62	19.31	_	9.23	~8.6 ^a [44] 6.65 [21]
1000	1.548	1.540	0.988	_	-112.05	0.491	-112.29	18.6	_	9.78	_
1063	1.533	1.524	0.980	0.037	-110.10	0.565	-109.85	17.9	_	11.6	_
1100	1.525	1.517	0.973	_	-109.04	0.610	-108.58	16.40	_	12.0	_
1153	1.514	1.503	0.962	0.041	-107.51	0.679	-106.76	14.91	_	13.9	_
1200	1.503	1.493	0.954	_	-106.07	0.742	-105.96	14.95	_	15.8	_
1244	1.495	1.482	0.945	_	-104.39	0.806	-105.15	14.25	_	16.9	_
1300	1.484	(1.470)	0.934	_	-103.40	0.890	-101.72	13.54	_	17.8	_
1400	1.460	(1.447)	0.912	_	-100.39	1.050	-98.29	_	_	20.0	_
1500	1.438	(1.424)	0.899	_	-97.60	1.103	-94.86	11.55	_	24.0	_

Примечание: стандартное отклонение в ячейках 4-й колонки возрастает сверху вниз от 0.032 до 0.088.


Коэффициент самодиффузии магния D был рассчитан по зависимости среднего квадрата смещений частиц от времени. Он монотонно увеличивается с температурой и описывается выражением D, см²/с = $3.8286 \times 10^{-11} T^{2.1356}$ (см. рис. 5). Зависимость вида $D \sim T^2$ была получена Р. Свэйлином (Swalin R.A.) для жидких металлов в 1959—1964 гг.

Рассмотрим соотношение Стокса—Эйнштейна, связывающее коэффициент самодиффузии и вязкость η : $D = kT/(4\pi\eta r_a)$. Здесь r_a — "радиус атома", близкий для металлических систем обычно к радиусу однозарядного иона. Радиус иона $\mathrm{Mg^+}$ в справочниках не приводится, но его можно оценить как среднее между радиусом атома 1.60 Å и радиусом иона $\mathrm{Mg^{2+}}$ 0.74 Å (т.е. около 1.17 Å). Вязкость жидкого магния при 925—998 К измерена в

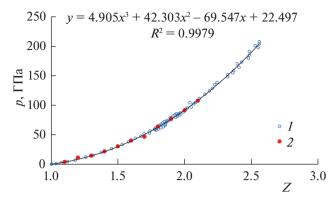
Таблица 5. Теплоемкости моделей C_p и C_v , C_{eT} — дополнительные электронные вклады, и u — скорость звука моделей жидкого магния на бинодали

	Д	ж/(моль l	и, м/с		
<i>T</i> , K	C_{eT}	C_p	C_{v}	МД	Опыт [14]
923	0.86	_	_	4035	4065
963	0.90	31.05	24.19	3999	4044
1000	0.92	29.75	22.89	3965	4022
1100	0.98	28.71	21.62	3791	3966
1200	1.06	29.68	22.36	3606	3910
1250	1.10	29.46	22.11	3563	3882

^а Среднее между Ве и Са [44].

Рис. 5. Температурная зависимость коэффициентов самодиффузии жидкого магния (МД).

[66]. Отсюда при T=925-998 К по данным табл. 4 получаем $r_a=0.98-1.16$ Å, что близко к приведенной выше оценке. Если принять за радиус атома половину координаты первого пика ПКФ (3.05/2 = 1.525 Å, рис. 1), то эта оценка будет завышена в полтора раза.


Температура плавления. Температуру плавления моделей магния рассчитали методом отогрева [67]. При нормальном давлении получено $T_m = 806 \text{ K}$, т.е. ниже реальной величины на 115 K.

Состояния магния при высоких давлениях. Для расчета свойств магния при высоких давлениях требуется определить коэффициенты ρ_6 , ρ_7 , ρ_8 , ρ_9 , a_7-a_{10} , b_7-b_{10} , c_7-c_{10} , m, n, q, s. Их можно найти двумя способами: по форме ударной адиабаты и по данным статического сжатия при 298 К. При этом параметры потенциала EAM-1, найденные при расчетах бинодали (т.е. при $\langle \rho \rangle < 1$), сохраняются в обоих случаях.

"Холодное давление" магния. Экспериментальные изотермы сжатия при 298 К были получены в ранних работах [68] при сравнительно невысоких давлениях, а далее — в алмазных ячейках до давления ~20 ГПа [11, 69] и до 221 ГПа [10] методом дифракционного измерения параметров решетки, а также рассчитаны методом ab initio [25]. Решетка ГПУ с отношением c/a = 1.624 (идеальное значение 1.633) устойчива до давлений ~50 ГПа, а при более высоких давлениях устойчива решетка ОЦК.

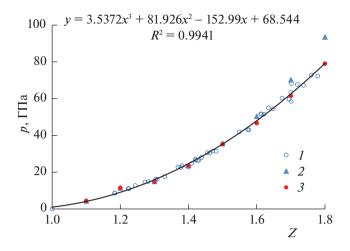
Мы рассчитали зависимость давления магния от степени сжатия Z непосредственной оцифровкой графика из статьи [10]. Эта зависимость описывается одновременно для фаз ГПУ- и ОЦК-уравнением:

$$p, \Gamma \Pi a = 4.905Z^3 + 42.303Z^2 - 69.547Z +$$

+ 22.497, $R^2 = 0.9979,$ (7)

Рис. 6. Изотерма давления ОЦК $-\Gamma\Pi$ У Мg при 298 К: I — данные [10, 11], 2 — расчет методом МД с потенциалом EAM-1.

где принято обозначение степени сжатия $Z = V_0/V$, и нормальный объем магния $V_0 = 13.968$ см³/моль. Эта зависимость показана на рис. 6. В интервале Z = 1.8 - 2.0 присутствуют обе фазы магния.


Были подобраны параметры потенциала EAM-1 для сжатых состояний, которые позволяют получить правильные значения давления на изотерме 298 К для ГПУ- и ОЦК-магния. Модели содержали по 2000 атомов в основном кубе. Параметры потенциала EAM-1 приведены в табл. 2. На рис. 6 показаны значения давления моделей при 298 К и Z < 2.2. Давление моделей хорошо согласуется с опытом, кроме выброса при Z = 1.7.

Можно сравнить график холодного давления (изотерма при 300 K) с расчетами методом *ab initio* и с потенциалом MEAM. Авторы [25] провели расчеты структуры и механических свойств кристаллического магния с потенциалом MEAM и сравнили изотермы давления с полученными ранее [24, 68–71]. Расчеты [25] в целом довольно близки к данным [10] и к нашим результатам при Z < 1.8. Данные [68–70] проявляют тенденцию к завышению давления с ростом Z.

Ударное сжатие. Уравнение ударной адиабаты (Гюгонио) имеет вид [72]:

$$\Delta E = E - E_0 = (1/2)(p_0 + p)(V_0 - V), \tag{8}$$

где E — энергия металла в сжатом состоянии, E_0 — энергия в исходном состоянии, p и V — давление и объем в сжатом состоянии, а p_0 и V_0 — они же в исходном состоянии. Величина $E_0 = -140.91$ кДж/моль (см. табл. 4), и $V_0 = 13.968$ см³/моль. Для расчета параметров потенциала в условиях ударного сжатия были использованы экспериментальные данные, полученные до давлений ~80 ГПа [16, 17]. Ударная адиабата магния показана на рис. 7.

Рис. 7. Ударная адиабата магния: I — опыт [16, 17], 2 — МД с потенциалом EAM-1, 3 — МД с потенциалом EAM-2 и с учетом электронных вкладов.

Реальную ударную адиабату магния можно аппроксимировать уравнением:

$$p$$
, $\Gamma\Pi a = 3.5372Z^3 + 81.926Z^2 - 152.99Z + $+ 68.544$, $R^2 = 0.9941$. (9)$

Поскольку магний — довольно мягкий металл, то значения давления на адиабате сравнительно невелики.

Было опубликовано всего два случая, когда ударную адиабату и изотерму статического сжатия при 298 К можно было получить, используя одни и те же параметры потенциала EAM. Это — индий и таллий [73, 74]. В случае магния удается получить правильную ударную адиабату (когда и энергия, и давление совпадают с величинами на реальной адиабате) при параметрах EAM-1 из табл. 2 только до значения степени сжатия Z = 1.5,

Таблица 6. Коэффициенты разложения потенциала погружения EAM-2 магния

i	ρ_i	<i>а_i</i> , эВ	<i>b_i</i> , эВ	c_i , $\ni \mathbf{B}$	
6	1.30	_	_	-	
7	2.10	-0.116691	0.222060	0.	13
8	2.49	0.162662	0.361904	-0.28	
9	3.06	0.252391	0.124613	-0.56	
10	_	0.136291	-0.515570	-0.26	
p_1	p_2	m	п	q	S
3.476	1.2000	1.10	1.80	1.95	1.15

Примечание: параметры при i = 1-4 совпадают с приведенными в табл. 2.

а при Z>1.5 расчетная адиабата идет на рис. 7 выше фактической (показаны значения давлений при температурах, при которых энергия модели совпадает с энергией на реальной адиабате). Поэтому методом подбора были найдены коэффициенты потенциала погружения EAM-2 ρ_6 , ρ_7 , ρ_8 , c_7 , c_8 , c_9 , n, m, q в (6), отвечающие за сжатые состояния реального магния (последнее уравнение в (6) при Z=1.8 не участвует в расчетах). Они приведены в табл. 6. Расчетные значения давления и энергии на адиабате с учетом электронных вкладов (в МСЭ при 2 эл/атом) показаны на рис. 7 и в табл. 7. Из всех моделей в табл. 7 только последняя (при Z=1.8) является жидкой. Коэффициент самодиффузии этой модели равен 20.0×10^{-5} см²/с.

Из табл. 7 видно, что потенциал EAM-2 хорошо описывает адиабату Гюгонио магния. Расчетная энергия моделей $E=E_{\rm MD}+E_{eT}$ близка к фактической $E_{\rm Hug}$ (колонки 7 и 10, Z=1.2-1.8, стандартное отклонение 0.14 кДж/моль). Для фактического давления на адиабате $p_{\rm Hug}$ и расчетного $p=p_{\rm MD}+p_{eT}$ (колонки 2 и 11) стандартное отклонение равно 1.34 ГПа (Z=1.2-1.8). Состояния с Z=1.6-1.8 плохо описываются потенциалом EAM-1.

Нанокластеры магния. Поверхностные свойства нанокластеров анализировали ранее методом МД в ряде работ ([75—77] и др.). В частности, проводилась проверка применимости к нанокластерам макроскопических уравнений термодинамики (уравнения Лапласа для давления, формулы Толмена для зависимости поверхностного натяжения от кривизны поверхности, уравнения Кельвина для давления пара). В [75] исследовали методом МД нанокластеры с потенциалом Леннард-Джонса, а в [76] — нанокластеры серебра, построенные с потенциалом ЕАМ [5], а также методом аb initio. В [77] были исследованы нанокластеры Аг, а также Ад, Fe и Zn с потенциалами ЕАМ.

Поверхностное натяжение на границе жидкость-газ рассчитывают обычно, используя двухфазные МД-модели с плоской границей раздела. Погрешность такого расчета составляет ~15–25% (Li [51], Sn [47]), причем в сторону как завышения, так и занижения. Значительно проще определять методом МД не поверхностное натяжение σ , а избыточную энергию поверхности h. В работе [77] была предложена схема расчета поверхностной энергии почти сферических нанокластеров. В качестве объектов были использованы икосаэлрические нанокластеры Маккея [78], содержащие от 13 до 5233 атомов. Было показано, что зависимость энергии нанокластера E от числа атомов в нем N может быть с высокой точностью аппроксимирована уравнениями:

$$E = aN + bN^{2/3}$$
 или $E/N = a + bN^{-1/3}$. (10)

 $p_{\rm Hug}$, ГПа T, K $E_{\mathrm{MD}} + E_{eT} \left| p_{\mathrm{MD}} + p_{eT} \right|$ Z ΔE $E_{\rm eT}$ $p_{
m eT}$ E_{Hug} $E_{\rm MD}$ p_{MD} [16, 17] моделей 1 2 3 4 5 6 7 8 9 10 11 0 0 -140.9 1.0^{a} 298 0.000 0.000 -138.6-0.87-138.6-0.874.09 -137.91.1a 2.60 300 0.000 0.000 -138.34.34 -137.94.34 9.04 0.007 0.000 -130.4-130.6 1.2^{a} 10.52 325 11.48 -130.611.49 1.3a 15.88 25.59 467 0.054 0.003 -115.3-115.214.99 -115.115.04 1.4a 24.64 49.16 858 0.257 0.017 -91.75-92.1223.56 -91.8623.73 0.059 -59.35 1.5^{a} 35.33 82.24 1505 0.825 -58.6735.28 -58.5235.34 47.97 125.6 2387 2.035 0.155 -15.26-17.4146.70 -15.3846.86 1.6a 1.7a 62.60 180.0 3623 4.54 0.368 39.12 34.65 61.57 39.19 61.94 1.8 79.23 245.9 4423 6.524 0.56 105.0 98.41 79.08 104.9 79.64

Таблица 7. Свойства моделей Mg при условиях ударного сжатия. Потенциал EAM-2, $V_0=13.968~{\rm cm}^3/{\rm моль},~E_0=-140.91~{\rm кДж/моль},~E_{\rm Hug}=E_0+\Delta E$

Примечания: ^а структура ОЦК. $Z = V_0/V$. Значения $E, E_0, E_{eT}, E_{\text{Hug}}, E_{\text{MD}}$ — в кДж/моль, $p_{\text{Hug}}, p_{eT}, p_{\text{MD}}$ — в ГПа.

Коэффициенты a и b могут быть найдены графически. Значения поверхностной энергии $E_s = h = bN^{2/3}$ были получены ранее для Ar, Ag, Fe, Zn [77], In [73] и Tl [74].

В силу термодинамического соотношения

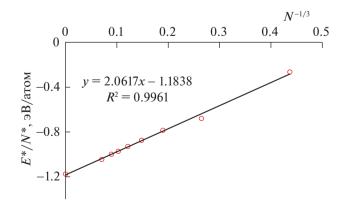
$$\sigma = h + Td\sigma/dT \tag{11}$$

можно было ожидать, что $\sigma < h$ (поскольку обычно $d\sigma/dT < 0$), причем разница между σ и h должна быть невелика. В [76] величины σ и h оценивали для моделей нанокластеров Ag размером от 13 до 5233 атомов, отрелаксированных с эмпирическим потенциалом EAM. При расчетах методом ab initio (SIESTA) отклонения σ от h были невелики (разница в несколько процентов) и знакопеременны, а при расчетах методом МД с потенциалом EAM величина σ при всех размерах кластеров Ag от 249 до 5233 атомов была на несколько процентов больше, чем h [76].

Аналогично [77], можно построить серию икосаэдрических нанокластеров Маккея для магния. Вследствие обычного испарения небольшая часть атомов находится в газовой фазе. При расчетах с потенциалом ЕАМ принималось во внимание, сколько атомов нанокластера находится в газовой фазе и не имеет ближайших соседей. Величины, рассчитанные без учета атомов в газовой фазе, обозначены как N^* , E^* , E^* , S^* . Модели находились в центральной части основного куба с длиной ребра 90 Å и не взаимодействовали со своими образами в соседних кубах. Периодически выполняли остановку возможного вращения кластера. Моделирование проводили прогонами по 10000 шагов по времени. Шаг по времени равнялся $\Delta t = 0.01t_0$, где единица времени $t_0 = 5.018 \times 10^{-14}$ с. Значения энергии этих нанокластеров были рассчитаны методом МД при 950 К и приведены в табл. 8 и на рис. 8. В последней строке таблицы приведены данные для модели сплошной жидкой фазы с периодическими граничными условиями (ПГУ).

Зависимость (10) для нанокластеров магния хорошо выполняется, причем a=-1.1838 эВ/атом, а b=2.0617 эВ/атом^{2/3} (см. рис. 8). Величина a почти совпадает с удельной энергией жидкого магния при 953 К (-1.1745 эВ/атом). Коэффициент b отвечает за поверхностную энергию кластеров [73, 74, 77]. В наших обозначениях поверхностная энергия кластера равна $E_s^* = b(N^*)^{2/3}$. Эти величины для кластеров с размерами $13 \le N \le 2869$ приведены в табл. 8 (6 колонка).

Площадь поверхности нанокластера определяли путем разложения кластера на симплексы Делоне [73, 74, 77]. Те грани кластера, которые с внешней стороны грани не имеют соседнего симплекса, являются поверхностными. Сумму площадей этих граней S_s можно отождествить с площадью поверхности кластера. Однако поверхность нанокластера напоминает при этом черепичную крышу. Поэтому была введена поправка на сглаживание поверхности, которая учитывает наклон грани по отношению к линии, соединяющей грань с центром кластера. Для учета этой негладкости каждая поверхностная грань симплексов нормализовалась, т.е. поворачивалась перпендикулярно к вектору, соединяющему эту грань с центром масс кластера. Новая сумма

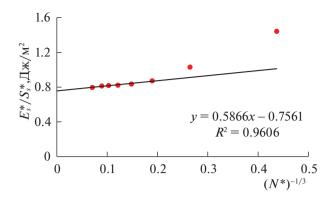

Таблина 8.	Поверхностные свойства	нанокластеров магния при 950 К
таолица о.	TIOBCDYHOCIHPIC CRONCIRG	і нанокласторов магния при 330 К

N	$N_{\scriptscriptstyle{\Gamma a3}}$	<i>E</i> *, эВ	$(N^*)^{-1/3}$	<i>E*/N*</i> , эВ/атом	<i>E</i> _s *, ∍B	S_s^* , Å ²	$E_s^*/S_s^*,$ $\partial \mathbf{B}/\mathring{\mathbf{A}}^2$	<i>E</i> _s */ <i>S</i> _s *, Дж/м ²
1	2	3	4	5	6	7	8	9
13	1	-3.176	0.4368	-0.26467	7.242	120.00	0.069637	1.443
55	1	-36.643	0.2646	-0.67857	18.943	310.24	0.061059	1.031
147	0	-115.31	0.1895	-0.78442	36.482	867.58	0.042051	0.872
309	1	-269.26	0.1481	-0.87422	59.865	1618.6	0.036986	0.836
561	0	-521.15	0.1212	-0.92897	89.093	2543	0.035035	0.822
923	1	-896.40	0.1027	-0.97223	124.166	3656.8	0.033955	0.819
1415	2	-1411.6	0.0891	-0.99902	165.085	5039.8	0.032756	0.814
2869	11	-2986.7	0.0705	-1.04505	264.458	8306.1	0.031839	0.796
Mg*	2000	-2349.1	0	-1.17455		_	_	0.756

Примечание: N^* , E^* , E^* , S^* — без учета атомов в газовой фазе.

нормализованных площадей граней симплекса (повернутых) S_s^* оказывается ниже исходной в среднем на 3-20% в зависимости от числа атомов в кластере и его рыхлости. Удельная поверхностная энергия увеличивается при этом на соответствующую долю.

В табл. 8 приведены значения нормализованной поверхности кластеров S_s^* и удельной поверхностной энергии кластеров магния $h = E_s^*/S_s^*$. На рис. 9 показана зависимость удельной поверхностной энергии нанокластеров магния $h = E_s^*/S_s^*$ от размеров нанокластера. Здесь также при $N \ge 55$ величина h линейно зависит от $N^{-1/3}$. В случае магния при 950 К предельное значение


Рис. 8. Зависимость (10) для кластеров магния при 950 K.

 $h = E_s^*/S_s^*$ при $N \to \infty$ (т.е. в макроскопическом пределе) равно 0.756 Дж/м².

Вернемся к соотношению (11). В случае реального магния при 950 К $\sigma = 0.559 \, \text{Дж/м}^2$ и $(d\sigma/dT)_p = -0.35 \, \text{мДж/м}^2$ [79], так что при 950 К получаем $h = 0.569 \, \text{Дж/м}^2$. Эта величина заметно ниже полученного МД-расчетом значения $0.756 \, \text{Дж/м}^2$. Здесь условие $\sigma < h$ выполняется.

В случае реального олова при 500 К $\sigma = 0.552$ Дж/м² и $(d\sigma/dT)_p = -0.13$ мДж/м² [79], так что при 500 К получаем h = 0.617 Дж/м². В работе [47] авторы измеряли методом МД с потенциалом МЕАМ поверхностное натяжение олова на плоской границе "модель олова—вакуум" и получили при 500 К значение $\sigma \sim 0.645$ Дж/м², которое больше фактического (0.552) и больше, чем h. Соответственно, в [80] анализ сферических кластеров Маккея с потенциалом ЕАМ олова дает значение h = 0.416 Дж/м². В отличие от условия $\sigma < h$, здесь получается обратное неравенство $\sigma > h$.

Такой же анализ был проведен в настоящей работе на моделях лития при 500 К с использованием потенциала EAM из [81]. На серии нанокластеров Маккея получено не нормализованное значение $h=0.530~\rm{Дж/m^2}$. С тем же потенциалом в [51] измерено поверхностное натяжение лития на плоской границе жидкость—пар двухфазным методом и получено $\sigma \approx 0.480~\rm{Дж/m^2}$. Здесь неравенство $\sigma < h$ выполняется. Расчет по опытным данным [79] при 500 К дает $\sigma = 0.390~\rm{Дж/m^2}$, и при $(d\sigma/dT)_p = -0.18~\rm{MДж/(m^2~K)}$ получается $h=0.480~\rm{Дж/m^2}$. Таким образом, расчеты на

Рис. 9. Удельная энергия поверхности нанокластеров магния при $950~\mathrm{K}.$

плоской границе раздела и на сферических нанокластерах дают близкие результаты, но расходятся с опытом [79].

В случае индия реальное значение поверхностного натяжения при 433 К известно с разбросом от 0.556 до 0.595 Дж/м² (в среднем 0.571), а производная $(d\sigma/dT)_p = -0.11$ мДж/м²К [79]. Для величины h при 433 К по уравнению (11) получается h = 0.619 Дж/м². В то же время рассчитанная на сферических нанокластерах удельная поверхностная энергия индия E_s^*/S_s^* в пределе $N \to \infty$ равна 0.474 Дж/м² [73] и ниже реальной величины h на ~25%.

В случае жидкого таллия при 588 К поверхностное натяжение равно $0.450~\rm Дж/м^2$ и $(d\sigma/dT)_p$ = $-0.119~\rm мДж/(м^2~\rm K)$ [79]. Отсюда по формуле (11) находим $h=0.520~\rm Дж/м^2$. В работе [74] на серии кластеров Маккея описанным выше методом получено значение $h=0.401~\rm Дж/м^2$, т.е. на 23% ниже величины σ . Аналогичное занижение поверхностной энергии по отношению к величине σ было получено для кластеров Ag в [76, 77].

Таблица 9. Сравнение σ и h. Данные в мДж/м²

Металл	<i>T</i> , K	Опы	т [79]	σ	h	
WICIADDI	1,10	σ	h (11)			
Li	500	390	480	480 [51, 81]	530 [81]	
Ag	0	1150	1150	1070 [76]	1000 [76], 840 [77]	
In	433	571	619	_	474 [73]	
Tl	588	450	520	_	401 [74]	
Sn	500	552	617	645 [47]	416 [80]	
Mg	950	559	569	_	756	

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Потенциал EAM-1 хорошо описывает свойства жидкого магния на бинодали, а также изотерму статического сжатия при 298 К. Ударная адиабата также хорошо описывается с помощью потенциала EAM-2, но с иными параметрами в области высоких давлений. ПКФ моделей жидкости не содержат аномалий.

Некоторые результаты МД-расчетов поверхностной энергии и поверхностного натяжения кластеров в пределе $N \to \infty$ приведены в табл. 9. Эти расчеты приводят к значительным расхождениям не только с опытом, но и с уравнением (11). Вряд ли эти расхождения можно приписать только недостаткам потенциалов ЕАМ/МЕАМ. Видимо, сама схема ЕАМ не подходит для расчетов поверхностных свойств металлов. При последовательном рассмотрении поверхностных свойств методами теории металлов необходимо учитывать "двухкомпонентность" металла (ионы + + электроны) [82], которая приводит к "выпячиванию" в вакуум электронного заряда (spill out) над кристаллической решеткой металла и к образованию двойного электрического слоя на поверхности. Эта двухкомпонентность не сочетается с идеологией ЕАМ. Поэтому нет оснований рассчитывать на предсказательную силу ЕАМ/МЕАМ в отношении поверхностных свойств. Например, довольно прямолинейный учет двойного слоя в случае серебра сильно меняет значения σ и h [76].

Пока неясны перспективы проверки соотношения (11) для нанокластеров. Теория функционала плотности (DFT) позволяет рассчитывать удельную поверхностную энергию с ошибкой ~10-20% [82]. Такова же и ошибка расчета поверхностной энергии h и поверхностного натяжения σ методом молекулярной динамики или прямого эксперимента. Однако если МД-расчет поверхностной энергии имеет ясный физический смысл, то МД-расчет поверхностного натяжения на двухфазных моделях металла через компоненты тензора напряжений приводит к неясным результатам. Расчеты поверхностных свойств металлов на основе EAM/MEAM должны быть дополнены вкладами от электронной структуры металлов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Данные на сайте: webelements.com
- 2. Stankus S.V., Khairulin R.A. // Цветные металлы. 1990. № 9. Р. 65.
- 3. *Arndt K., Ploetz G.* // Z. phys. Chemie. 1927. Bd 130. S. 184.
- Edwards J.D., Taylor C.S. // Trans. AIME. 1923. V. 69. P. 1070.
- 5. Abdullaev R.N., Khairulin R.A., Kozlovskii Yu.M. et al. // Trans. Nonferrous Met. Soc. China. 2019. V. 29. P. 507.

- Ruppersberg H., Saar J., Speicher W., Heitjans P. // J. de Physique. Colloque C8. Suppl. No 8. 1980. V. 41. P. C8-595.
- Waseda Y. The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids. N.Y.: McGraw-Hill, 1980. 325 p.
- 8. *Tahara S., Fujii H., Yokota Y. et al.* // Physica B. 2006. V. 385/386. P. 219.
- Debela T.T., Wang X.D., Cao Q.P. et al. // J. Appl. Phys. 2015. V. 117. 114905.
- Stinton G.W., MacLeod S.G., Cynn H. et al. // Phys. Rev. B. 2014. V. 90 (13). 134105.
- Courac A., Le Godec Y., Solozhenko V.L. et al. // J. Appl. Phys. 2020. V. 127. 055903.
- 12. Таблицы физических величин. Справочник под ред. И.Л. Кикоина. М.: Атомиздат. Табл. 6.18.
- 13. *Brandes E.A.* Smithells Metals Reference Book, London: Butterworths (1983).
- McAlister S.P., Crozier E.D., Cochran J.F. // Can. J. Phys. 1974. V. 52. P. 1847.
- 15. *Yokoyama I.*, *Waseda Y.* // High Temp. Materials and Processes. 2006. V. 25. № 5–6. P. 261.
- 16. Данные на сайте: http://www.ihed.ras.ru/rusbank/
- 17. *Marsh S.P.* (Ed.). LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980).
- 18. *Adebayo G.A., Akinlade O., Hussain L.A.* // Pramana—J. Phys. 2005. V. 64. № 2. P. 269.
- 19. *Baria J.K., Janib A.R.* // Brazilian J. Phys. 2010. V. 40. № 2. P. 204.
- Gonzalez L.E., Meyer A., Iniguez M.P. et al. // Phys. Rev. E. 1993. V. 47. P. 4120.
- Alemany M.M.G., Casas J., Rey C. et al. // Phys. Rev. E. 1997. V. 56 (6). P. 6818
- Зольников К.П., Псахье С.Г., Ланда А.И., Панин В.Е. // Изв. вузов. Физика. 1984. № 4. С. 20.
- Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. V. 29. P. 6443.
- 24. *Baskes M.I., Johnson R.A.* // Modelling Simul. Mater. Sci. Eng. 1994. V. 2. P. 147.
- Dremov V.V., Karavaev A.V., Kutepov A.L., Soulard L. // AIP Conference Proceedings 955 (Melville, NY, AIP, 2008). P. 305.
- Liu X.-Y., Adams J.B., Ercolessi F., Moriarty J.A. // Modelling Simul. Mater. Sci. Eng. 1996. V. 4. P. 293.
- Sun D., Mendelev M., Becker C. et al. // Phys. Rev. B. 2006. V. 73. 024116.
- 28. *Doneghan M., Heald P.T.* // Physica status solidi (a). 1975. V. 30. P. 403.
- 29. *Wu Z., Francis M., Curtin W.* // Modelling Simul. Mater. Sci. Eng. 2015. V. 23. 015004.
- 30. Li X., Qin Y., Fu J., Zhao J. // Comp. Mater. Sci. 2015. V. 98. P. 328.
- 31. *Pei Z., Sheng H., Zhang X. et al.* // Materials & Design. 2018. V. 153. P. 232.
- 32. Smirnova D.E., Starikov S.V., Vlasova A.M. // Preprint. Comp. Mater. Sci. 2018. V. 154. P. 295.
- 33. *Igarashi M., Kanta K., Vitek V.* // Phil. Mag. B. 1991. V. 63. P. 603.

- Pasianot R., Savino E.J. // Phys. Rev. B. 1992. V. 45. P. 12704.
- 35. Baskes M.I. // Phys. Rev. Lett. 1987. V. 59. P. 2666.
- 36. *Voter A.F., Chen S.P.* // Mater. Res. Soc. Symp. Proc. 1987. V. 82. P.175.
- Ercolessi F., Adams J.B. // Europhys. Lett. 1994. V. 26.
 P. 583.
- 38. *Moriarty J.A., Althoff J.D.* // Phys. Rev. B. 1995. V. 51. P. 5609.
- Sturgeon J.B., Laird B.B. // Physical Review B. 2000.
 V. 62. P. 14720.
- 40. *Bai Y.* Molecular dynamics simulation study of solid—liquid interface properties of HCP magnesium. Thesis. McMaster University, September 2012.
- 41. Agrawal A., Mishra R., Ward L. et al. // Modelling Simul. Mater. Sci. Eng. 2013. V. 21. 085001.
- 42. Baskes M.I., Chen S.P., Cherne F.J. // Phys. Rev. B. 2002. V. 66. 104107.
- 43. Dremov V.V., Karavaev A.V., Sapozhnikov F. et al. // DY-MAT. 2009 (2009). 1277.
- 44. *Beatriz G. del Rio, Gonzalez L.E.* // J. Phys. Condens. Matter. 2014. V. 26 (46). 465102.
- 45. Белащенко Д.К. // ТВТ. 2012. Т. 50. № 1. С. 65.
- 46. Ravelo R., Baskes M. // Phys. Rev. Lett. 1997. V. 79. P. 2482.
- 47. Vella J.R., Chen M., Stillinger F.H. et al. // Phys. Rev. B. 2017. V. 95. 064202.
- 48. Won-Seok Ko, Dong-Hyun Kim, Yong-Jai Kwon, Min Hyung Lee // Metals. 2018. V. 8. P. 900.
- Etesami S.A., Baskes M.I., Laradji M., Asadi E. // Acta Mater. 2018. V. 161. P. 320.
- 50. Zhiwei Cui, Feng Gao, Zhihua Cui, Jianmin Qu // Modeling Simul. Mater. Sci. Eng. 2012. V. 20. 015014.
- 51. Vella J.R., Stillinger F.H., Panagiotopoulos A.Z., Debenedetti P.G. // J. Phys. Chem. B. 2015. V. 119. P. 8960.
- 52. Белащенко Д.К. // УФН. 2020. Т. 190. № 12. С. 1233.
- Zhou L.G., Huang H. // Phys. Rev. B. 2013. V. 87. 045431.
- 54. de Wijs G.A, Pastore G., Selloni A., van der Lugt W. // Phys. Rev. Lett. 1995. V. 75. P. 4480.
- 55. Sengűl S., Gonzalez D.J., Gonzalez L.E. // J. Phys.: Condens. Matter. 2009. V. 21. 115106.
- Wax J.F., Albaki R., Bretonnet J.L. // Phys. Rev. B. 2000. V. 62. 14818.
- 57. *Iida T., Guthrie R.I.L.* The Physical Properties of Liquid Metals. Oxford Science Publications, Oxford, 1988.
- 58. *Белащенко Д.К.* // Журн. физ. химии. 2022. Т. 96. № 7. С. 952.
- Belashchenko D.K. Liquid Metals. From Atomistic Potentials to Properties, Shock Compression, Earth's Core and Nanoclusters. Nova Science Publ. New York, 2018.
- 60. *Белащенко Д.К., Островский О.И.* // Журн. физ. химии. 2006. Т. 80. № 4. С. 602.
- 61. Белащенко Д.К. // ТВТ. 2006. Т. 44. № 5. С. 682.
- 62. Schommers W. // Phys. Lett. 1973. V. 43A. P. 157.
- 63. Waseda Y., Yokoyama K., Suzuki K. // Philos. Mag. 1974. V. 30. P. 1195.
- 64. Белащенко Д.К. // УФН. 2013. Т. 183. № 12. С. 1281.

- Термодинамические свойства индивидуальных веществ, Под ред. В.П. Глушко. Т. 3. М.: Наука, 1981 г.
- 66. Culpin M.F. // Proc. Phys. Soc. B. 1957. V. 70. P. 1079.
- Belashchenko D.K., Ostrovskii O.I. // High Temp. 2009.
 V. 47. P. 211.
- Clendenen G.L., Drickamer H.G. // Phys. Rev. 1964.
 V. 135. P. 1643.
- 69. Errandonea D., Meng Y., Hausermann D., Uchida T. // J. Phys. Condens. Matter. 2003. V. 15(8). P. 1277.
- Olijnyk H., Holzapfel W.B. // Phys. Rev. B. 1985. V. 31. P. 4682.
- 71. Bridgman P. // Proc. Am. Acad. 1948. V. 76. P. 98.
- 72. *Ландау Л.Д., Лифшиц Е.М.* Теоретическая физика. Т. VI. Гидродинамика. М.: Наука, 1986.
- 73. *Белащенко Д.К.* // Журн. физ. химии. 2021. Т. 95. № 12. С. 1804.

- 74. Белащенко Д.К. // Там же. 2022. Т. 96. № 3. С. 390.
- 75. Thompson S.M., Gubbins K.E., Walton J.P.R.B. et al. // J. Chem. Phys. 1984. V. 81. P. 530.
- 76. *Medasani B., Park Y.H., Vasiliev I.* // Phys. Rev. B. 2007. V. 75. 235436.
- 77. *Белащенко Д.К.* // Журн. физ. химии. 2015. Т. 89. № 3. С. 517.
- 78. Mackay A.L. // Acta Crystallogr. 1962. V. 15. P. 916.
- 79. Influence de la temperature sur la tension superficielle. Techniques de l'ingenieur, traite Constantes physicochiniques. K 476-2.
- 80. *Белащенко Д.К.* // Журн. физ. химии. 2023. Т. 97. № 1. С. 128.
- 81. Белащенко Д.К. // ТВТ. 2009. Т. 47. № 2. С. 231.
- 82. Patra A., Bates J.E., Sun J., Perdew J.P. // PNAS. 2017. October 17. E9188.