# СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УЛК: 541.571.9

# ВЛИЯНИЕ ГАЛОГЕНА ПРИ АТОМЕ ДВУХВАЛЕНТНОЙ СЕРЫ НА СВОЙСТВА КОМПЛЕКСОВ С ХАЛЬКОГЕННОЙ И ВОЛОРОЛНОЙ СВЯЗЬЮ

© 2023 г. А. Н. Исаев<sup>а,\*</sup>

<sup>a</sup>Институт органической химии им. Н.Д. Зелинского РАН, 119991 Москва, Россия
\*e-mail: isaevaln@ioc.ac.ru
Поступила в редакцию 10.04.2022 г.
После доработки 28.11.2022 г.

Принята к публикации 29.11.2022 г.

Квантово-химическим методом MP2/aug-cc-pVTZ проведены расчеты бинарных комплексов с халькогенной связью (А-комплексы) и водородной связью (Б-комплексы), образованных молекулами SHX (X = F, Cl, Br, OH) двухвалентной серы и молекулой воды. Проведены NBO-анализ, топологический анализ электронной плотности и разложение энергии связи на компонеты для комплексов обоих типов. Квантово-химические расчеты показали, что энергии связи, энергии межорбитального взаимодействия мономеров, а также величины электронной плотности в критической точке (3, -1) межмолекулярного контакта в A- и Б-комплексах имеют близкие значения. Основной вклад в стабилизацию комплексов вносит электростатическое взаимодействие, однако в Б-комплексах значителен также вклад компоненты с переносом заряда. Заметную роль в связывании мономеров в комплексах обоих типов играет дисперсионная энергия. Согласно проведенным расчетам взаимопревращение A- и Б-комплексов происходит с очень низким акти-

*Ключевые слова:* нековалентные взаимодействия, халькогенная и водородная связь, структура переходного состояния, MP2/aug-cc-pVTZ -расчеты

**DOI:** 10.31857/S0044453723050114. **EDN:** MOVDHT

вационным барьером.

Межмолекулярные (нековалентные) взаимодействия лежат в основе различных физико-химических процессов и биохимических реакций. В исследованиях в последние десятилетия были получены доказательства того, что ключевую роль в межмолекулярных взаимодействиях играет электростатика. Так, еще в 1977 году было высказано мнение, что водородное связывание в молекулярных комплексах определяется существованием области положительного электростатического потенциала (ESP) на атоме водорода [1]. Последующие исследования показали, что появление областей положительного и отрицательного ESP является результатом перераспределения электронной плотности при образовании молекулы из атомов. Положительный электростатический потенциал связан с областью пониженной электронной плотности, которая может появляться на продолжении ковалентной σ-связи. Такая область пониженной электронной плотности получила в литературе название σ-дырки (σ-hole) [2].

Взаимодействие положительного ESP-потенциала электронодефицитной области с донором неподеленной пары приводит к электростатической стабилизации молекулярного комплекса. К настоящему времени способность к межмолекулярному обрачному связыванию выявлена у элементов IV—VII групп периодической таблицы, на ковалентно-связанных атомах которых найдены области положительного электростатического потенциала [3—6]. Межмолекулярное связывание с участием атомов этих элементов получило в литературе название тетрельной, пниктогенной, халькогенной и галогенной связей.

Величина связанного с σ-дыркой ESP-потенциала, которая в значительной степени определяется электронной плотностью на σ-дырке, зависит от поляризуемости атома и его электронодонорных свойств. Дефицит электронной плотности увеличивается при переходе от легкого к тяжелому атому в данной группе периодической таблицы [7]. Большие тяжелые атомы имеют более высокую поляризуемость и менее электроотрицательны, что приводит к большим положительным значе-

ниям ESP. Электростатический потенциал в области  $\sigma$ -дырки растет с увеличением электроноакцепторных свойств других частей молекулы и весьма чувствителен к распределению заряда во всей молекуле [8]. Помимо электростатического взаимодействия в молекулярных комплексах при  $\sigma$ -дырочном связывании заметную роль могут играть дисперсионные силы [9—12], а также межорбитальное взаимодействие с переносом заряда [13—16].

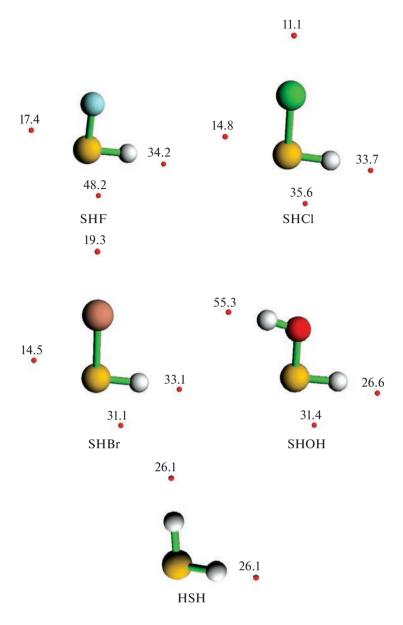
Хотя в настоящее время нековалентные взаимодействия активно изучаются теоретической химией, работ, в которых проводится прямое сравнение о-комплексов разного типа, по-прежнему немного, и ряд важных вопросов остается малоизученным. Например, можно ли говорить, что природа межмолекулярного взаимодействия в о-комплексах с водородной и халькогенной связью одинакова, если рассматривать электростатическую, донорно-акцепторную и дисперсионную компоненты энергии связи? С целью получить ответ на этот вопрос в настоящей работе с использованием квантово-химических методов выполнен сравнительный анализ свойств водородной связи S-Н О и халькогенной связи X-S···О в комплексах, образованных молекулами SHX (X = F, Cl, Br, OH) двухвалентной серы с молекулой воды.

#### МЕТОЛЫ РАСЧЕТОВ

Рассмотрены простые бинарные комплексы, в которых роль донора электронной пары (основания Льюиса) играла молекула воды, а функцию акцептора-кислоты Льюиса выполняли молекулы SHX (X = F, Cl, Br, OH), содержащие атом двухвалентной серы S(II). Проводился сравнительный анализ о-дырочного связывания для двух вариантов ориентации мономеров. В соответствии с локализацией областей пониженной электронной плотности и положительного электростатического потенциала (ESP) (см. рис. 1), в о-дырочном связывании может участвовать как атом серы, так и атом водорода молекулы SHX. В комплексах первого типа (комплексы А) молекула SHX образует с молекулой воды халькогенную связь S···O, а в комплексах второго типа (комплексы Б) — водородную связь  $S-H\cdots O$ .

Квантово-химические расчеты молекулярных комплексов типов A и Б проведены по программе Gaussian 09 [17] методом MP2/aug-cc-pVTZ, который в последние годы широко используется при исследовании нековалентных взаимодействий. В исследовании [18] межмолекулярных взаимодействий различной природы было показано, что метод MP2 [19] теории возмущений Меллера—Плессета второго порядка дает корректное описа-

ние свойств молекулярных комплексов при проведении расчетов в корреляционно-согласованных базисах Даннинга aug-cc-pVxZ (x = T, Q), дополненных диффузными функциями [20].


Структуры, найденные в расчетах с полной оптимизацией геометрии, были проверены на отсутствие мнимых частот в матрице силовых констант. Энергии связи в молекулярных комплексах были определены как разность между полной энергией комплекса и суммой полных энергий изолированных мономеров и далее скорректированы с учетом суперпозиционной ошибки базисного набора (BSSE) согласно схеме Бойса—Бернарди [21]. Анализ орбиталей натуральных связей (NBO) [22, 23] и расчеты химических сдвигов ЯМР по методу GIAO [24, 25] проводились с использованием процедур, включенных в программный пакет Gaussian 09.

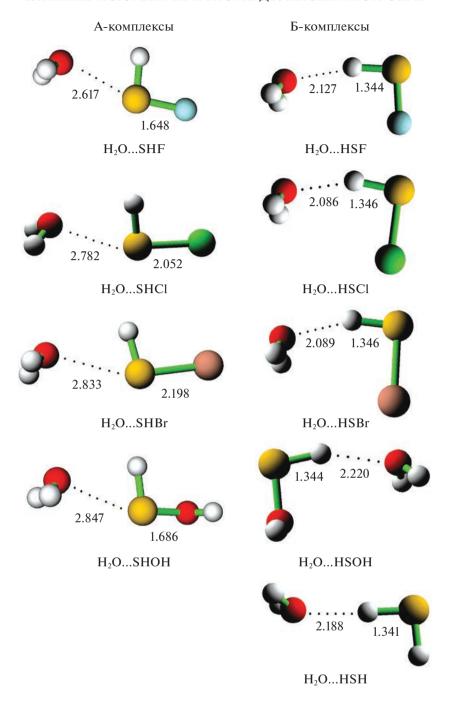
Молекулярные графы построены на основе данных квантово-химических расчетов с помощью программы Multiwfn [26]. Для анализа топологии электронной плотности в комплексах по теории Бейдера [27, 28] использован метод AIM программы Gaussian 09 и программа Multiwfn. Разложение энергии взаимодействия мономеров на компоненты выполнено с использованием програмного пакета GAMESS [29, 30].

### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Геометрия и энергия связи. Бинарные комплексы с халькогенной и водородной связью (А- и Бкомплексы, соответственно), которые рассматриваются в настоящей статье, показаны на рис. 2. Расчетные геометрические параметры комплексов приведены на рисунке и в табл. 1. Из таблицы видно, что хотя межмолекулярное расстояние в Н-связанных комплексах заметно меньше, чем в комплексах с халькогенной связью, энергии связи в комплексах обоих типов оказываются близки. ~4-6 ккал/моль. По данным расчетов наиболее прочную халькогенную связь S···О с молекулой воды образует молекула SHF. Этот вывод согласуется с результатами квантово-химических расчетов [31] на уровне MP2/aug-cc-pVDZ комплексов, образованных галогензамещенными производными молекулы  $\mathrm{SH}_2$  с молекулой аммиака. Согласно [31] энергия халькогенной связи в комплексе Н<sub>3</sub>N···SHF превышает 10 ккал/моль, тогда как в комплексе Н<sub>3</sub>N…SHBr она менее 5 ккал/моль.

С уменьшением электроотрицательности заместителя-галогена X при атоме S в молекулах SHX на атоме серы уменьшается значение положительного ESP-потенциала, что приводит к увеличению расстояния между мономерами в Акомплексах и уменьшению энергии халькогенной связи. В Б-комплексах с H-связью мы видим




**Рис. 1.** Положение максимумов положительного электростатического потенциала ESP на ван-дер-ваальсовой поверхности молекул двухвалентной серы, образующих бимолекулярные комплексы с халькогенной и водородной связью. Значения максимумов ESP (ккал/моль) найдены с использованием программы Multiwfn.

обратную картину: энергия H-связи S-H···O возрастает с уменьшением электроотрицательности галогена в ряду  $H_2O$ ···HSF <  $H_2O$ ···HSCl < <  $H_2O$ ···HSBr. Интересно, что при этом энергия H-связи в комплексах галогензамещенных производных заметно выше, чем в комплексе  $H_2O$ ···HSH. Энергия как халькогенной, так и водородной связи найдена наименьшей в комплексах, образованных молекулой SHOH.

Как показывает табл. 1, значения углов  $\theta_{XSO}$  и  $\theta_{SHO}$  координации мономеров в комплексах с халькогенной и водородной связью заметно отклоняются от  $180^{\circ}$ ; при этом не выявляется ка-

кой-либо тенденции для этих углов с изменением электроотрицательности соседнего с серой атома галогена. В то же время наблюдается линейная корреляция между углами  $\theta$  и углом  $\alpha$ , определяющим положение максимума положительного ESP на атомах серы и водорода в молекулах, которые образуют соответствующие комплексы A- и Б-типа (рис. 3).

Ковалентные связи S—X и S—H молекул SHX при образовании ими халькогенной и водородной связи с молекулой воды удлиняются; при этом наблюдается следующее отличие для A- и Б-комплексов. С уменьшением электроотрицательности заместителя X удлинение ковалентной свя-



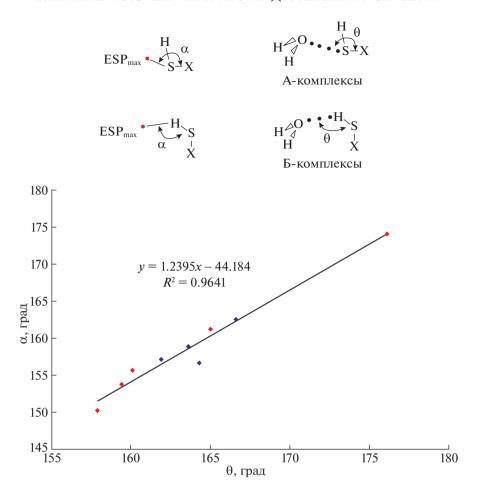
**Рис. 2.** Молекулярные комплексы с халькогенной связью S···O (А-комплексы) и с водородной связью S–H···O (Б-комплексы), образованные соединениями двухвалентной серы и молекулой воды. Числа указывают межатомные расстояния в Å.

зи S-X мономера в комплексе A уменьшается, тогда как удлинение связи S-H при образовании комплекса B становится больше. Соответствующие изменения длины ковалентной связи при комплексообразовании отражает частотный сдвиг  $\Delta v_{SX}$  и  $\Delta v_{SH}$  в UK-спектрах; в обоих случаях наблюдается красное смещение SX- и SH-полос валентного колебания.

Несколько неожиданным оказался результат NMR-анализа экранирования ядра атома серы, представленный в табл. 1. Расчеты методом GIAO показали усиление экранирования в комплексах с халькогенной связью. Химический сдвиг в высокочастотную область особенно велик в комплексе  $\rm H_2O\cdots SHF$ , образованном молекулами воды и SHF.

**Таблица 1.** Межмолекулярное расстояние  $R(S\cdots O)$  и  $R(H\cdots O)$ , максимальное значение положительного электростатического потенциала ESP на атомах серы и водорода в молекулах SHX, угол  $\alpha$ , определяющий положение максимума ESP, угол  $\theta_{XSO}$  ( $\theta_{SHO}$ ) халькогенной и водородной связи, изменение длины  $\Delta R_{SX}$  ( $\Delta R_{SH}$ ) ковалентных связей S—X и S—H, частотный сдвиг  $\Delta v_{SX}$  ( $\Delta v_{SH}$ ) полосы в ИК-спектре, химический сдвиг  $\delta_S$  ( $\delta_H$ ) на атомах серы и водорода и энергия связи  $E_{\text{bind}}$  в комплексах с халькогенной и водородной связью

| • •                              | $R(S\cdots O)/R(H\cdots O),$ | -         | α,    | $\theta_{\rm XSO}/\theta_{\rm SHO},$ | $\Delta R_{\rm SX}/\Delta R_{\rm SH}$ , | _                | $\delta_{\rm S}/\delta_{\rm H},$ | $E_{ m bind}$ , ккал/моль |        |
|----------------------------------|------------------------------|-----------|-------|--------------------------------------|-----------------------------------------|------------------|----------------------------------|---------------------------|--------|
| комплекс                         | A                            | ккал/моль | град  | град                                 | мÅ                                      | cm <sup>-1</sup> | ppm                              | без BSSE                  | c BSSE |
| А-комплекс<br>халькогенная связь |                              |           |       |                                      |                                         |                  |                                  |                           |        |
| H <sub>2</sub> O···SHF           | 2.617                        | 48.2      | 162.6 | 166.6                                | 14.4                                    | -34.4            | 103.7                            | 5.96                      | 5.47   |
| H <sub>2</sub> O···SHCl          | 2.782                        | 35.6      | 158.4 | 163.6                                | 12.7                                    | -18.0            | 6.5                              | 4.45                      | 4.00   |
| $H_2O$ ···SHBr                   | 2.833                        | 31.1      | 157.2 | 161.9                                | 10.4                                    | -9.7             | 3.9                              | 4.18                      | 3.58   |
| H <sub>2</sub> O···SHOH          | 2.847                        | 31.4      | 156.7 | 164.3                                | 7.2                                     | -13.5            | 15.0                             | 3.72                      | 3.32   |
| Б-комплекс водородная связь      |                              |           |       |                                      |                                         |                  |                                  |                           |        |
| H <sub>2</sub> O···HSF           | 2.127                        | 34.2      | 161.3 | 165.0                                | 4.2                                     | -48.2            | -2.3                             | 3.88                      | 3.49   |
| H <sub>2</sub> O···HSCl          | 2.086                        | 33.7      | 153.8 | 159.4                                | 7.0                                     | -79.2            | -2.9                             | 4.41                      | 3.96   |
| H <sub>2</sub> O···HSBr          | 2.089                        | 33.1      | 150.2 | 157.9                                | 7.2                                     | -81.3            | -3.1                             | 4.64                      | 3.98   |
| H <sub>2</sub> O···HSOH          | 2.220                        | 26.6      | 155.7 | 160.1                                | 1.5                                     | -24.4            | -1.9                             | 2.93                      | 2.53   |
| H <sub>2</sub> O···HSH           | 2.188                        | 26.1      | 174.1 | 176.1                                | 5.2                                     | -45.8            | -2.3                             | 2.98                      | 2.65   |


Анализ натуральных орбиталей (NBO-анализ). Особенности координации мономеров относительно друг друга при халькогенном и водородном связывании обуславливают различия в межорбитальном взаимодействии. Образованию  $\sigma$ -комплекса с халькогенной связью отвечает перекрывание  $n_{O}$ -орбитали неподеленной электронной пары кислорода молекулы воды и анти- $\sigma$ -орбитали  $\sigma_{SX}^*$  ковалентной связи S-X-молекулы SHX. В H-связанном комплексе в межорбитальное взаимодействие мономеров вовлечены неподеленная пара кислорода и анти- $\sigma$ -орбиталь  $\sigma_{SH}^*$  ковалентной связи S-H.

Межорбитальное перекрывание определяет донорно-акцепторное взаимодействие мономеров с переносом заряда с молекулы воды. Количественной оценкой донорно-акцепторного взаимодействия является энергия E(2) возмущения второго порядка. В табл. 2 приведены значения E(2), отвечающие межорбитальному взаимодействию  $n_{\rm O} o \sigma_{\rm SX}^*$  и  $n_{\rm O} o \sigma_{\rm SH}^*$  в А- и Б-комплексах соответственно. Из данных таблицы можно видеть, что значения E(2) для случаев халькогенной и водородной связи в рассматриваемых комплексах очень близки, 5-8 ккал/моль. Для сравнения, рассчитанные методом MP2/aug-cc-pVTZ энергии E(2) межорбитального взаимодействия мономеров в комплексах Cl-...SCO и Cl-...SCS с халькогенной связью S···Cl составляют 8.56

7.91 ккал/моль [4]. Величина электронного заряда  $Q_{\rm tr}$ , который переходит с молекулы воды, в комплексах обоих типов хорошо коррелирует с заселенностью  $\eta$   $n_{\rm O}$ -орбитали неподеленной пары кислорода воды.

При образовании  $\sigma$ -комплексов с халькогенной связью изменение NPA-заряда  $\Delta q_{\rm S}$  на атоме серы заметно меньше, чем изменение NPA-заряда  $\Delta q_{\rm H}$  на атоме водорода в H-связанных комплексах. В A-комплексах наблюдается контринтуитивная тенденция увеличения положительных значений  $\Delta q_{\rm S}$  с уменьшением электроотрицательности атома галогена, ковалентно связанного с серой. Расчетные величины  $\Delta q_{\rm O}$  на атоме кислорода молекулы воды в A- и Б-комплексах близки и отрицательны, что ожидаемо из соображений электростатической стабилизации комплексов.

Топологический анализ. Анализ топологии электронной плотности в комплексах с халькогенной и водородной связью методом AIM-теории Бейдера [27, 28] показывает существование связевого пути, соединяющего атом кислорода с серой в А-комплексах и с водородом в Б-комплексах. На рис. 4 представлены молекулярные графы комплексов  $H_2O$ ···SHF и  $H_2O$ ···HSF, а значения топологических параметров критической точки связи BCP (3, -1) для межмолекулярных контактов S···O и H···O даны в табл. 3. Второй столбец таблицы показывает электронную плот-



**Рис. 3.** Линейная корреляция между значениями угла  $\alpha$ , определяющего положение максимума положительного электростатического потенциала вблизи атомов серы и водорода в молекулах двухвалентной серы, и угла  $\theta$  ориентации мономеров в комплексах с халькогенной связью S $\cdots$ O (синие значки) и комплексах с водородной связью S-H $\cdots$ O (красные значки).

ность  $\rho_{BCP}$  в критической точке, которая считается показателем прочности межмолекулярной связи [32, 33]. В А- и Б-комплексах значения  $\rho_{BCP}$  близки и варьируют от 0.013 а.u. до 0.020 а.e., попадая в интервал значений, характерный для комплексов с водородной связью, 0.002 а.e.  $< \rho_{BCP} < < 0.035$  а.e. [34].

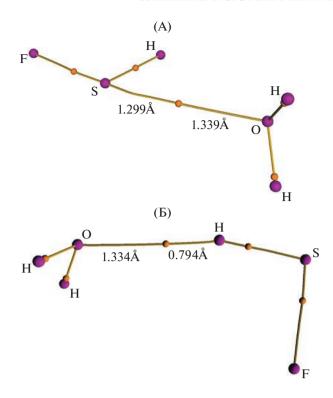
Из табл. З видно, что лапласиан электронной плотности  $\nabla^2 \rho_{BCP}$  в критической точке связи (3,-1) во всех комплексах имеет положительное значение, что характерно для систем с закрытыми оболочками. В комплексах обоих типов отмечаются близкие значения плотности потенциальной энергии  $V_{BCP}$  и плотности полной энергии  $H_{BCP}$  в критической точке межмолекулярных контактов. Во всех комплексах значения  $H_{BCP}$  положительны, что позволяет исключить заметную роль ковалентной составляющей как в водородном, так и в халькогенном связывании [35]. Несколько бо́льшие значения LOL- и ELF-параметров указывают на более выраженную локализацию орби-

талей и электронов в критической точке водородной связи по сравнению с халькогенной связью. Меньшие значения эллиптичности лапласиана є в Б-комплексах также свидетельствуют о том, что структурная стабильность комплексов с Н-связью несколько выше, чем у комплексов с халькогенным освязыванием. Отметим, что электростатический потенциал ESP в критической точке межмолекулярных контактов S…О и Н…О в рассматриваемых нейтральных комплексах имеет положительное значение в отличие от анионных комплексов, в которых ESP, как правило, отрицателен [36, 37].

Разложение энергии связи на составляющие. Полезную информацию о природе межмолекулярного взаимодействия дает анализ составляющих энергии связи в молекулярном комплексе. В табл. 4 представлены значения компонент энергии взаимодействия мономеров в А- и Б-комплексах, рассчитаннные по схеме Китауры—Морокумы [38]. Из данных таблицы видно, что

**Таблица 2.** Процентный вклад p-орбитали % p в гибридные орбитали, NPA-заселенность  $\eta$ -орбитали, изменение NPA-заряда  $\Delta q$  на атомах при образовании комплекса, перенесенный с молекулы воды заряд  $Q_{\rm tr}$  и энергия возмущения E(2) второго порядка в комплексах с халькогенной и водородной связью

| Молекулярный комплекс         | $n_{ m O}$ -орбиталь |                                                     | $\sigma_{\mathrm{SX}}^*/\sigma_{\mathrm{SH}}^*$ |                                   | $\Delta q$ , me   |       | $Q_{\mathrm{tr}}$ , | E(2), |  |
|-------------------------------|----------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------|-------------------|-------|---------------------|-------|--|
| молекулярный компыске         | % p                  | % $p$ $\eta$ % $p$ $\eta$ $\Delta q_{\mathrm{S}}/2$ |                                                 | $\Delta q_{ m S}/\Delta q_{ m H}$ | $\Delta q_{ m O}$ | me    | ккал/моль           |       |  |
| А-комплекс халькогенная связь |                      |                                                     |                                                 |                                   |                   |       |                     |       |  |
| H <sub>2</sub> O···SHF        | $79.81sp^{3.97}$     | 1.9743                                              | $90.01sp^{11.65}$                               | 0.0290                            | -6.1              | -10.0 | 19.5                | 9.05  |  |
| H <sub>2</sub> O···SHCl       | $79.32sp^{3.86}$     | 1.9829                                              | 89.65 <i>sp</i> <sup>12.03</sup>                | 0.0167                            | 14.3              | -9.7  | 11.9                | 5.79  |  |
| H <sub>2</sub> O···SHBr       | $79.72sp^{3.95}$     | 1.9848                                              | $90.04sp^{12.25}$                               | 0.0142                            | 19.5              | -9.1  | 10.5                | 4.93  |  |
| H <sub>2</sub> O···SHOH       | $87.07sp^{6.80}$     | 1.9864                                              | $88.32sp^{8.37}$                                | 0.0167                            | -2.9              | -7.7  | 8.7                 | 4.40  |  |
| Б-комплекс водородная связь   |                      |                                                     |                                                 |                                   |                   |       |                     |       |  |
| H <sub>2</sub> O···HSF        | $73.26sp^{2.75}$     | 1.9881                                              | $83.42sp^{5.36}$                                | 0.0188                            | 48.2              | -13.1 | 7.5                 | 6.28  |  |
| H <sub>2</sub> O···HSCl       | $78.14sp^{3.59}$     | 1.9858                                              | 81.91 <i>sp</i> <sup>4.99</sup>                 | 0.0201                            | 50.7              | -11.3 | 9.4                 | 7.57  |  |
| H <sub>2</sub> O···HSBr       | $81.30sp^{4.38}$     | 1.9853                                              | 81.81 <i>sp</i> <sup>4.94</sup>                 | 0.0190                            | 49.6              | -10.3 | 10.0                | 7.65  |  |
| H <sub>2</sub> O···HSOH       | $72.34sp^{2.62}$     | 1.9914                                              | $83.72sp^{5.45}$                                | 0.0203                            | 43.7              | -10.6 | 4.5                 | 4.05  |  |
| H <sub>2</sub> O···HSH        | $62.64sp^{4.89}$     | 1.9914                                              | $82.34sp^{4.89}$                                | 0.0072                            | 42.1              | -10.8 | 5.3                 | 4.18  |  |


**Таблица 3.** Электронная плотность  $\rho$ , лапласиан электронной плотности  $\nabla^2 \rho$ , эллиптичность лапласиана  $\epsilon$ , плотность потенциальной энергии  $V_{\rm BCP}$ , плотность полной энергии  $H_{\rm BCP}$ , параметры локализации электронов ELF и орбиталей LOL и электростатический потенциал ESP в критической точке межмолекулярных контактов S···O и H···O в комплексах с халькогенной и водородной связью

| Morovinganius is volumento    | Топологические параметры |                 |        |                    |                    |        | IOI    | ECD    |
|-------------------------------|--------------------------|-----------------|--------|--------------------|--------------------|--------|--------|--------|
| Молекулярный комплекс         | ρ                        | $\nabla^2 \rho$ | ε      | $V_{\mathrm{BCP}}$ | $H_{\mathrm{BCP}}$ | ELF    | LOL    | ESP    |
| А-комплекс халькогенная связь |                          |                 |        |                    |                    |        |        |        |
| H <sub>2</sub> O···SHF        | 0.0203                   | 0.0882          | 0.0952 | -0.0179            | 0.0021             | 0.0451 | 0.1786 | 0.1492 |
| H <sub>2</sub> O···SHCl       | 0.0150                   | 0.0669          | 0.2315 | -0.0119            | 0.0024             | 0.0323 | 0.1545 | 0.0869 |
| H <sub>2</sub> O···SHBr       | 0.0138                   | 0.0615          | 0.3929 | -0.0106            | 0.0024             | 0.0296 | 0.1488 | 0.0697 |
| H <sub>2</sub> O⋯SHOH         | 0.0129                   | 0.0595          | 0.3519 | -0.0109            | 0.0023             | 0.0257 | 0.1399 | 0.0674 |
| Б-комплекс водородная связь   |                          |                 |        |                    |                    |        |        |        |
| $H_2O\cdots HSF$              | 0.0172                   | 0.0676          | 0.0361 | -0.0121            | 0.0024             | 0.0489 | 0.1850 | 0.0804 |
| H <sub>2</sub> O···HSCl       | 0.0193                   | 0.0738          | 0.0332 | -0.0140            | 0.0022             | 0.0568 | 0.1972 | 0.0929 |
| $H_2O\cdots HSBr$             | 0.0194                   | 0.0737          | 0.0357 | -0.0140            | 0.0022             | 0.0576 | 0.1983 | 0.0941 |
| H <sub>2</sub> O···HSOH       | 0.0140                   | 0.0561          | 0.0359 | -0.0093            | 0.0024             | 0.0382 | 0.1663 | 0.0474 |
| $H_2O\cdots HSH$              | 0.0144                   | 0.0587          | 0.0581 | -0.0098            | 0.0024             | 0.0382 | 0.1662 | 0.0525 |

Примечание. Все величины кроме ε даны в а.е.

процентное соотношение вкладов в халькогенное и водородное связывание заметно отличается. В А-комплексах с халькогенной связью вклад электростатического взаимодействия (ES-компонента) заметно превышает компоненту с обменным отталкиванием (EX), которая составляет около 60% от ES-компоненты. В Б-комплексах с Н-связью электростатическое взаимодействие

также доминирует, но величины ES- и EX-компонент отличаются не столь существенно. В стабилизации Б-комплексов заметную роль играет также компонента с переносом заряда (СТ), вклад которой в энергию водородной связи достигает 40% от вклада электростатического взаимодействия.



**Рис. 4.** Молекулярные графы электронной плотности, построенные для комплекса  $H_2O$ ···SHF с халькогенной связью S···O (A) и комплекса  $H_2O$ ···HSF с водородной связью O···H=S (Б). Пурпурные и оранжевые сферы отвечают критическим точкам (3,-3) и (3,-1) соответственно; коричневые линии обозначают связевые пути. Числа указывают расстояние от ядра атома до критической точки (3,-1) межмолекулярного контакта.

Значения дисперсионной энергии, которую можно определить как энергию электронной корреляции  $E_{\rm corr}$ , приведены в последнем столбце табл. 4 и дополняют разложение Китауры—Морокумы. Величины  $E_{\rm corr}$  найдены как разность полных энергий комплексов, рассчитанных на post-SCF- и SCF-уровнях теории, и составляют 1.5—2.5 ккал/моль в комплексах обоих типов. Поскольку энергии связи в рассматриваемых комплексах невелики ( $\sim$ 4 ккал/моль), дисперсионные взаимодействия играют довольно важную роль в их стабилизации.

Взаимопревращение комплексов. Расчеты показывают, что в рассматриваемых комплексах мономеры могут легко менять взаимную ориентацию; при этом комплекс A переходит в комплекс Б и наоборот. Структура переходного состояния (ПС) подобного взаимопревращения комплексов была найдена с использованием процедуры QST3 программы Gaussian 09. Расчетная геометрия переходных состояний для реакции  $A \leftrightarrow B$  взаимопревращения комплексов показана на рис. 5. Из рисунка мы видим, что с уменьшением электроотрицательности заместителя-галогена при атоме

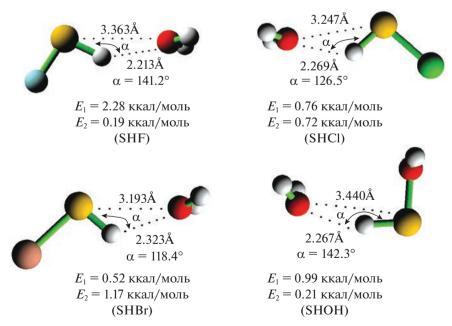
серы в ПС наблюдается уменьшение угла OHS со 141.2° в комплексе, образованном молекулой HSF, до 118.4° при образовании комплекса молекулой HSBr, а расстояние S···O уменьшается соответственно с 3.363 до 3.193 Å.

Наблюдаемая тенденция для атомов галогенов находится в согласии с расчетной энергией связи в А- и Б-комплексах. Как видно из данных табл. 1, молекула HSF образует намного более прочную халькогенную связь по сравнению с водородной, т.е. А-комплексу  $H_2O$  SHF на поверхности потенциальной энергии (ППЭ) отвечает глобальный минимум, а Б-комплексу H<sub>2</sub>O···HSF – локальный. Поэтому переход  $Б \to A$  происходит с образованием раннего переходного состояния, когда атом водорода молекулы HSF в ПС не очень сильно смещается с линии H-связи S-H···O. В случае с молекулой HSBr ситуация обратная: Н-связь с молекулой воды оказывается прочнее, чем халькогенная, и глобальный минимум на ППЭ отвечает Б-комплексу H<sub>2</sub>O···HSBr. Поэтому в ПС при превращении  $\mathbf{F} \to \mathbf{A}$  мы видим заметное отклонение угла OHS от линейного и сближение атомов серы и кислорода мономеров.

На рис. 5 приведены также величины активационных барьеров взаимопревращений  $A \to B(E_1)$ и Б  $\rightarrow$  A ( $E_2$ ). Для всех комплексов расчетные барьеры не превышают 2 ккал/моль, что определяет легкость взаимопревращения  $A \leftrightarrow B$  комплексов. Отметим, что топологический анализ показывает для всех комплексов существование в переходном состоянии только одного межмолекулярного связывающего пути Н...О, соединяющего атом кислорода молекулы воды и водород молекулы HSX. Таким образом, доминирующим взаимодействием между мономерами при образовании ПС является водородное связывание. Из литературных данных известно, что в Н-связанных молекулярных комплексах угол водородной связи Х-Н…Ү может отклоняться от линейного до значений в 110° [39].

Таким образом, квантово-химические расчеты бинарных комплексов H<sub>2</sub>O···SHX с халькогенной связью (А-комплексы) и комплексов H<sub>2</sub>O···HSX с водородной связью (Б-комплексы) показали, что пространственная ориентация мономеров определяется положением максимумов положительного электростатического ESP-потенциала на атомах серы и водорода молекулы SHX. По данным расчетов энергии халькогенной связи в комплексах А и водородной связи в комплексах Б имеют близкие значения. В комплексах обоих типов наблюдается удлинение ковалентной связи, вовлеченной в межмолекулярное связывание, т.е S–X- и S–H-связей, и смещение полосы соответствующего валентного колебания в ИК-спектре в длинноволновую область.

**Таблица 4.** Компоненты энергии связи (ккал/моль) в комплексах с халькогенной и водородной связью, полученные с использованием схемы Китауры—Морокумы и данных MP2/aug-cc-pVTZ расчетов


| Молекулярный            | Компонента энергии связи |       |       |       |       |  |  |  |  |
|-------------------------|--------------------------|-------|-------|-------|-------|--|--|--|--|
| комплекс                | ES                       | EX    | POL   | CT    | DISP  |  |  |  |  |
| А-комплекс              |                          |       |       |       |       |  |  |  |  |
| халькогенная связь      |                          |       |       |       |       |  |  |  |  |
| H <sub>2</sub> O···SHF  | -12.24                   | 7.46  | -0.92 | -2.80 | -2.47 |  |  |  |  |
| H <sub>2</sub> O···SHCl | -9.72                    | 6.71  | -0.93 | -2.87 | -1.87 |  |  |  |  |
| H <sub>2</sub> O···SHBr | -4.37                    | 2.72  | -0.34 | -0.93 | -1.93 |  |  |  |  |
| H <sub>2</sub> O···SHOH | -6.69                    | 3.75  | -0.58 | -1.59 | -1.81 |  |  |  |  |
| Б-комплекс              |                          |       |       |       |       |  |  |  |  |
| водородная связь        |                          |       |       |       |       |  |  |  |  |
| H <sub>2</sub> O···HSF  | -10.60                   | 8.56  | -0.98 | -3.51 | -1.42 |  |  |  |  |
| H <sub>2</sub> O···HSCl | -12.88                   | 11.63 | -1.21 | -4.71 | -1.85 |  |  |  |  |
| H <sub>2</sub> O···HSBr | -14.65                   | 14.70 | -1.33 | -5.81 | -2.13 |  |  |  |  |
| H <sub>2</sub> O···HSOH | -8.36                    | 5.89  | -0.51 | -3.16 | -1.43 |  |  |  |  |
| H <sub>2</sub> O···HSH  | -5.37                    | 5.08  | -0.62 | -2.23 | -1.32 |  |  |  |  |

Примечание. Обозначения ES, EX, POL и CT относятся к компонентам электростатического взаимодействия, обменного отталкивания, поляризации и переноса заряда соответственно. Компоненты с отрицательным знаком являются связывающими. Компонента MIX в разложении Китауры—Морокумы в таблицу не включена. DISP— энергия дисперсии, которая определена как расчетное значение энергии электронной корреляции.

Энергии E(2) межорбитального взаимодействия в A- и Б-комплексах также близки, а величина переноса заряда с молекулы воды хорошо

коррелирует с заселенностью орбитали неподеленной пары кислорода. Расчетные значения топологических параметров типичны для систем с закрытой электронной оболочкой и указывают на немного более высокую структурную стабильность комплексов с Н-связью. В рассмотренных комплексах доминирующей компонентой энергии межмолекулярного взаимодействия является электростатика; однако в комплексах с Н-связью величины электростатического вклада и энергии обменного отталкивания близки. В Б-комплексах значительный вклад в стабилизацию комплексов вносит компонента с переносом заряда, которая приближается к 40% от электростатической компоненты. Для комплексов обоих типов существенными оказываются дисперсионные взаимодействия; в комплексах с халькогенной связью энергия дисперсии сопоставима с компонентой с переносом заряда.

С уменьшением электроотрицательности галогена при атоме серы отмечается уменьшение стабильности А-комплекса и увеличение стабильности Б-комплекса, при этом глобальный минимум на ППЭ для комплекса А превращается в локальный. По данным расчетов имеет место легкое взаимопревращение комплексов; активационный барьер перехода  $A \leftrightarrow B$  не превышает 2 ккал/моль. Межмолекулярное связывание мономеров в переходном состоянии определяется водородной связью  $S-H\cdots O$ , угол которой варьирует от 118 до  $141^\circ$ .



**Рис. 5.** Структура переходного состояния для взаимопревращения комплексов  $A \leftrightarrow B$ .  $E_1$  и  $E_2$  показывают величину активационного барьера перехода  $A \to B$  и  $B \to A$  соответственно. В скобках указана молекула SHX, образующая комплекс с волой.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Kollman P. // J. Am. Chem. Soc. 1977. V. 99. P. 4875.
- Clark T., Hennemann M., Murray J.S., Politzer P. // J. Mol. Model. 2007. V. 1. P. 291.
- 3. Auffinger P., Hays F.A., Westhof E., Ho P.S. // Proc. Natl. Acad. Sci. USA 2004. V. 101. P. 16789.
- Wang W., Ji B., Zhang Y. // J. Phys. Chem. A 2009.
   V. 113. P. 8132.
- Murray J.S., Lane P., Politzer P. // Int. J. Quantum Chem. 2007. V. 107. P. 2286.
- Murray J.S., Lane P., Politzer P. // J. Mol. Model. 2009.
   V. 15. P. 723.
- Murray J.S., Lane P., Clark T. et al. // Ibid. 2012. V. 18. P. 541.
- 8. *Wheeler S.E., Houk K.N.* // J. Chem. Theory Comput. 2009. V. 5. P. 2301.
- Riley K.E., Hobza P. // J. Chem. Theory Comput. 2008.
   V. 4. P. 232.
- 10. *Riley K.E., Murray J.S., Politzer P. et al.* // J. Chem. Theory Comput. 2009. V. 5. P. 155.
- Riley K.E., Hobza P. // Phys. Chem. Chem. Phys. 2013.
   V. 15. P. 17742.
- 12. Deepa P., Pandiyan B.V., Kolandaivel P., Hobza P. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 2038.
- Rosokha S.V., Stern C.L., Ritzert J.T. // Chem. Eur. J. 2013. V. 19. P. 8774.
- Rosokha S.V., Vinakos M.K. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 1809.
- Wolters L.P., Bickelhaupt F.M. // Chemistry Open 2012.
   V. 1. P. 96.
- Zhang X.Y., Zeng Y.L., Li X.Y. et al. // Struct. Chem. 2011. V. 22. P. 567.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
- 18. Quiñonero D., Estarellas C., Frontera A., Deyà P.M. // Chem. Phys. Lett. 2011. V. 508. P. 144.
- 19. Moller C., Plesset M.S. // Phys. Rev. 1934. V. 46. P. 618.

- 20. Kendall R.A., Dunning T.H. Jr., Harrison R.J. // J. Chem. Phys. 1992. V. 96. P. 6796.
- 21. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. P. 553.
- Reed A.E., Weinhold F., Curtiss L.A., Pochatko D.J. // J. Chem. Phys. 1986. V. 84. P. 5687.
- 23. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88. P. 899.
- 24. Ditchfield R. // Mol. Phys. 1974, V. 27. P. 789.
- Wolinski K., Hilton J.F., Pulay P. // J. Am. Chem. Soc. 1990. V. 112. P. 8251.
- 26. Lu T., Chen F. // J. Comp. Chem. 2012. V. 33. P. 580.
- 27. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
- 28. *Bader R.F.W.* Atoms in molecules, a quantum theory. Oxford: Clarendon Press. 1993.
- 29. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. P. 1347.
- 30. *Gordon M.S., Schmidt M.W.* // Theory and Applications of Computational Chemistry: the first forty years. Eds. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria. Asterdam: Elsevier, 2005. 1167 p.
- Nepal B., Scheiner S. // Chemical Physics 2015. V. 456.
   P. 34.
- 32. *Mó O., Yánez M., Elguero J.* // J. Mol. Struct. (Theochem) 1994. V. 314. P. 73.
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. P. 170.
- 34. *Popelier P.L.A.* // J. Phys. Chem. A 1998. V. 102. P. 1873.
- Cremer D., Kraka E. // Angew. Chem., Int. Ed. Engl. 1984. V. 23. P. 627.
- Isaev A.N. // Comput. Theoret. Chem. 2017. V. 1117.
   P. 141.
- 37. Isaev A.N. // Chem. Phys. Lett. 2021. V. 763. 138195.
- 38. *Morokuma K., Kitaura K.* Molecular Interactions. York: WileyNew, 1980. P. 21.
- 39. Steiner T. // Angew. Chem., Int. Ed. Engl. 2002. V. 41. P. 48