_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УЛК 541.11:536.7

ТЕРМОХИМИЯ РАСТВОРЕНИЯ ТЕТРА-4-(4'-КАРБОКСИФЕНИЛОКСИ)-И ТЕТРА-4-(4'-КАРБОКСИФЕНИЛТИО) ФТАЛОЦИАНИНОВ МЕДИ В ВОДНЫХ РАСТВОРАХ КОН ПРИ 298.15 К

© 2023 г. О. Н. Крутова^{а,*}, В. Е. Майзлиш^а, В. В. Черников^а, Т. В. Тихомирова^а, П. Д. Крутов^а

^а Ивановский государственный химико-технологический университет, Иваново, Россия

*e-mail: kdvkonkpd@yandex.ru

Поступила в редакцию 02.10.2022 г. После доработки 04.10.2022 г. Принята к публикации 05.10.2022 г.

Получены комплексы состава: $CuPc(4-S-C_6H_4-COOH)_4$ и $CuPc(4-O-C_6H_4-COOH)_4$, нерастворимые в воде. Значения стандартных энтальпий образования данных соединений рассчитаны аддитивно-групповым методом, основанным на групповой систематике с классификацией фрагментов типа Бенсона, учитывающей влияние первичного окружения атомов. Тепловые эффекты растворения кристаллических фталоцианинов в водных растворах различной концентрации КОН при температуре 298.15 К определяли прямым калориметрическим методом. Значения тепловых эффектов ступенчатой диссоциации $CuPc(4-S-C_6H_4-COOH)_4$, $CuPc(4-O-C_6H_4-COOH)_4$, были рассчитаны с помощью компьютерной программы HEAT. Рассчитаны стандартные энтальпии образования продуктов диссоциации $CuPc(4-S-C_6H_4-COOH)_4$ и $CuPc(4-O-C_6H_4-COOH)_4$ в водном растворе.

Ключевые слова: термодинамика, растворы, калориметр, энтальпия образования, константа диссоциации, фталоцианины

DOI: 10.31857/S0044453723060134. EDN: KCKJBJ

Фталоцианины (Рс) – класс соединений, уникальные физико-химические свойства которых исследуются во многих областях современной науки [1, 2]. Сочетание ценных фотофизических характеристик и высокой (термо)химической устойчивости обусловливает возможность получения на основе фталоцианинов различных оптоэлектронных устройств: зарядовой памяти и активного слоя CD/DVD-дисков, газовых сенсоров, светоизлучающих устройств, оптических ограничителей и фоторефрактивных материалов, сенсибилизаторов в препаратах для фотодинамической терапии онкологических заболеваний. Они широко используются в качестве красителей, катализаторов для очистки углеводородов от сернистых соединений [3-8]. Важное место в ряду производных фталоцианинов занимают фенилокси- и фенилтиозамещенные Рс, обладающие растворимостью в органических растворителях, что расширяет возможные области практического применения. Такие комплексы значительно уступали по термической устойчивости незамещенным Рс [8].

В данной работе в качестве объекта исследования были выбраны комплексы: $CuPc(4-S-C_6H_4-COOH)_4$ (1) и $CuPc(4-O-C_6H_4-COOH)_4$ (2) (рис. 1).

Целью данной работы было определение стандартных энтальпий образования комплексов состава $CuPc(4-S-C_6H_4-COOH)_4$ и $CuPc(4-O-C_6H_4-COOH)_4$ и продуктов их диссоциации в водном растворе по тепловым эффектам растворения препаратов в водных растворах КОН при 298.15 K.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение исследуемых тетракарбоновых кислот фталоцианина меди проводили по несколько измененной методике, представленной в работах [9, 10] (схема 1).

Тщательно растертую смесь 0.25 ммоль замещенного фталонитрила [66 мг 4-(4'-карбоксифенокси)- или 70 мг 4-(4'-карбоксифенилтио)фталонитрила], 14 мг (0.07 ммоль) моногидрата ацетата меди и 15 мг (0.25 ммоль) мочевины помещали в кварцевую пробирку, нагревали до температуры 453.15—463.15 К и выдерживали при этой температуре до затвердения массы. Плав тщательно растирали, промывали 10%-ным водным раствором соляной кислоты, водой до нейтральной среды и отсутствия в промывных водах ионов хлора, сушили. Синтезированные комплексы очищали переосаждением из концентри-

Рис. 1. Структурные формулы соединений: $CuPc(4-O-C_6H_4-COOH)_4$ (1); $CuPc(4-S-C_6H_4-COOH)_4$ (2), $CuPc(-COOH)_4$ (3).

рованной серной кислоты с последующей экстракцией примесей ацетоном и этанолом в аппарате Сокслета. Полученные соединения сушили под вакуумом при температуре 373.15—383.15 К.

Выход продуктов, результаты элементного анализа, данные масс-спектрометрии (MALDI-NOF-MS), колебательной и электронной спектроскопии представлены в табл. 1.

Таблица 1. Результаты элементного анализа, данные масс-спектрометрии (MALDI-NOF-MS), колебательной и электронной спектроскопии

Параметр	Комплекс 1 CuPc(4-OC ₆ H ₄ -COOH) ₄			Комплекс 2 CuPc(4-SC ₆ H ₄ -COOH) ₄		
Выход, мг (%)	32(45)			56(75)		
Элементный анализ, %	С	Н	N	С	Н	N
	64.3/63.9	2.9/3.1	10.0/9.4	60.8/60.2	2.7/3.0	9.5/9.0
MALDI-NOF-MS, m/z	1120.45			1184.75		
ИК-спектр, ν , см $^{-1}$	1751 (-COOH); 1170 (Ar-O-Ar)			1772 (-COOH); 1137 (Ar-S-Ar)		
ЭСП (ДМФА), λ_{max} , нм	621; 667			635; 685		

H₂NOC

$$H_2$$
NOC

 H_2 NOC

Схема 1. Полученные тетра-4-карбоксиметаллофталоцианины.

Известно, что в результате темплатного синтеза образуется смесь рандомеров, разделение которых представляет собой сложную задачу. В нашем случае разделение и выделение индивидуальных рандомеров не проводилось.

Измерения проводились в калориметре с изотермической оболочкой, снабженном реакционным сосудом объемом 60 см³, электрической градуировкой при $T = (293.15 - 308.15) \pm 0.01$ K и P = $=100.5\pm0.7~\mathrm{k\Pi a}$ и автоматической регистрацией температуры [11]. В качестве датчика температуры использовался термистор КМТ-14. Температурный контроль калориметрической ячейки осуществлялся в термостате, снабженном ПИДрегулятором с точностью 0.002 К. Датчиком температуры термостата служил платиновый термометр сопротивления. Калориметр калибровали по току. Объем калориметрической жидкости 42.83 мл. Рабочий объем ампулы 1-1.6 см³, максимальная термометрическая чувствительность калориметрической установки составила (0.5-2) $\times 10^{-2}$ Дж мм $^{-1}$ шкалы самописца. Работу установки проверяли по интегральной энтальпии растворения кристаллического хлорида калия в

воде и считали годной для измерения, если определяемое в ней значение $\Delta_{\rm sol}H(\infty H_2 {\rm O})=17.25\pm0.06~$ кДж/моль отличалось от нормативного $\Delta_{\rm sol}H(\infty H_2 {\rm O})=17.22\pm0.04~$ кДж/моль на 0.3% [12]. Доверительный интервал среднего значения ΔH рассчитывали с вероятностью 0.95.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Значения стандартных энтальпий образования $CuPc(4-S-C_6H_4-COOH)_4$, и $CuPc(4-O-C_6H_4-COOH)_4$ рассчитаны с использованием аддитивного группового метода, основанного на групповой систематике с классификацией фрагментов типа Бенсона, учитывающей влияние первичного окружения атомов [13—15]. Расчет энтальпии сгорания и образования испытуемого соединения проводили по формуле:

$$\Delta_{c(f)}H_{(\kappa p)}^{\circ} = \sum_{i}^{n} A_{i}\Delta_{c(f)}H_{i}^{0}, \quad i = 1, 2, 3,n,$$
(1)

где $\Delta_{\rm c(f)} H_{\rm (кp)}$ — энергетический вклад в энтальпию сгорания определенной атомной группы, A_i —

Таблица 2. Численные значения энергетических вкладов в значения энтальпии образования в соответствии с классификацией Бенсона [13—15]

Группа	Количество групп (<i>n</i>)	$-\Delta_{\mathrm{f}}H_{(\mathrm{тв})i}^{\circ},$ кДж/моль
	4	-41.13 ± 33.70
(C)-COOH	4	453.30 ± 2.30
(C) ₂ O	4	92.47**
(C) ₂ S	4	48.2**
N Н (Пиррол)	4	$-329.95 \pm 41.14***$
$(C)_2(O)$ —CH	4	-0.10 ± 4.60
(C) ₃ –CH	12	-19.90 ± 29.30
(C) ₃ -N	4	-102.00 ± 64.30
(C) ₄ –Cu*	1	-3048.2 ± 43.4

^{*} Величина энергетического вклада рассчитывается по формуле $E_{\mathrm{compl.}} = \Delta_{\mathrm{f}} H_{(\mathrm{Me-EP-I})}^{\circ} - \Delta_{\mathrm{f}} H_{(\mathrm{H}_2\mathrm{EP-I})}^{\circ}$, где $\Delta_{\mathrm{f}} H_{(\mathrm{Me-EP-I})i}^{\circ}$ стандартная энтальпия образования комплекса 2,7,12,17-тетраметил-3,8,13,18-тетраэтилпорфина, кДж/моль; $\Delta_{\mathrm{f}} H_{(\mathrm{H}_2\mathrm{EP-I})}^{\circ}$ стандартная энтальпия образования 2,7,12,17-тетраметил-3,8,13,18-тетраэтилпорфина, кДж/моль.

число таких атомных групп в молекуле, n- число типов атомных групп в молекуле.

В табл. 2 представлены исходные данные для расчета $\Delta_{\rm f} H_{\rm (kp)}^{\circ} = 2996.6 \pm 1.9$ кДж/моль (соединение 1) и $\Delta_{\rm f} H_{\rm (kp)}^{\circ} = 2819.2 \pm 1.9$ кДж/моль (соединение 2) исследуемых соединений.

Процесс растворения в растворе КОН можно представить следующей схемой:

$$H_4L(\kappa p.) + 4OH^-(p-p, nH_2O) \rightarrow$$

 $\rightarrow L^{4-}(p-p, nH_2O) + 4H_2O.$ (2)

Графическая экстраполяция энтальпий растворения исследуемых соединений в растворах гидроксида калия к нулевой ионной силе представлена на рис. 2. Экспериментальные данные приведены в табл. 3.

Тепловые эффекты растворения кислоты в растворе КОН при нулевой ионной силе рассчитывали по уравнению [16]:

$$\Delta_r H_i - \Delta Z^2 \psi(I) = \Delta_r H_i^{\circ} + bI, \tag{3}$$

где $\Delta_{\rm r} H_i$ и $\Delta_{\rm r} H_i^{\circ}$ — тепловые эффекты процесса (2) при конечных и нулевых значениях ионной силы.

Используя значения стандартных энтальпий образования гидроксид-иона $\Delta_{\rm f} H^{\circ}({\rm OH^-},{\rm p-p},{\rm H_2O},{\rm ct.~c.},298.15~{\rm K})=-230.04\pm0.08~{\rm кДж/моль}$ и воды в водном растворе $\Delta_{\rm f} H^{\circ}({\rm H_2O},~{\rm ж},~298.15~{\rm K})=-285.83\pm0.04~{\rm кДж/моль},$ рекомендованные справочником [17], была рассчитана стандартная энтальпия образования депротонированного ${\rm L^{4-}}$ аниона:

$$\Delta_{\rm f} H^{\circ}({\rm L}^{4-}, {\rm p-p, H_2O, ct. c., 298.15 K}) =$$

$$= \Delta_{\rm f} H^{\circ}({\rm H_4L, \kappa p., 298.15 K}) +$$

$$+ 4\Delta_{\rm f} H^{\circ}({\rm OH^-}, {\rm p-p, H_2O, ct. c., 298.15 K}) +$$

$$+ \Delta_{\rm r} H^{\circ}_{(2)} - 4\Delta_{\rm f} H^{\circ}({\rm H_2O, x., 298.15 K}). \tag{4}$$

Стандартные энтальпии образования HL^{3-} , H_2L^{2-} , H_3L^- , H_4L в водном растворе рассчитывали по уравнениям:

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{3-}, {\rm p-p, H_2O, ct., ruп., heдuc.},$$

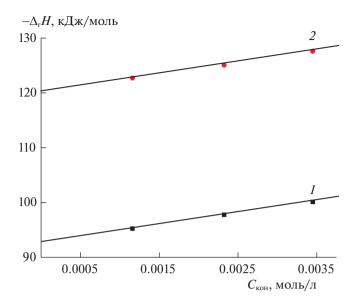
$$298.15 \text{ K}) = \Delta_{\rm f} H^{\circ}({\rm L}^{4-}, {\rm p-p, H_2O, ct.},$$

$$298.15 \text{ K}) - \Delta_{\rm dis} H^{\circ}({\rm HL}^{3-}, 298.15 \text{ K}),$$
(5)

$$\Delta_{\rm f} H^{\circ}({\rm H_2L^{2^-}}, {\rm p-p, H_2O}, {\rm ст., ruп., heдuc.},$$

$$298.15 \text{ K}) = \Delta_{\rm f} H^{\circ}({\rm HL^{3^-}}, {\rm p-p, H_2O}, {\rm ct.},$$

$$298.15 \text{ K}) - \Delta_{\rm dis} H^{\circ}({\rm H_2L^{2^-}}, 298.15 \text{ K}),$$
(6)


$$\Delta_{\rm f} H^{\circ}({\rm H}_{3}{\rm L}^{-}, {\rm p-p, H}_{2}{\rm O}, {\rm ct., ruп., heдuc.,}$$
 298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm H}_{2}{\rm L}^{2-}, {\rm p-p, H}_{2}{\rm O}, {\rm ct.,}$ (7) 298.15 K) – $\Delta_{\rm dis} H^{\circ}({\rm H}_{3}{\rm L}^{-}, 298.15 {\rm K}),$

$$\Delta_{\rm f} H^{\circ}({\rm H_4L, p-p, H_2O, ct., ruп., heдuc.},$$

 $298.15 \text{ K}) = \Delta_{\rm f} H^{\circ}({\rm H_3L^-, p-p, H_2O, ct.},$ (8)
 $298.15 \text{ K}) - \Delta_{\rm dis} H^{\circ}({\rm H_4L, 298.15 K}).$

Значения $\Delta_{\rm dis}H({\rm H_4L},\ 298.15\ {\rm K});\ \Delta_{\rm dis}H({\rm H_3L^-},\ 298.15\ {\rm K}),\ \Delta_{\rm dis}H({\rm H_2L^{2-}},\ 298.15\ {\rm K}),\ \Delta_{\rm dis}H({\rm H_2L^{3-}},\ 298.15\ {\rm K}),\ \Delta_{\rm dis}H({\rm H_2^{3-}},\ 298.15\ {\rm K}),\ \Delta_{\rm$

^{**} Величина погрешности авторами не указана.

^{***} Величина вклада и погрешность рассчитана исходя из погрешности экспериментальных величин энтальпий образования 2,4-диметил-3-этил-5-карбэтоксипиррола [(Me)₂EtCEOP] и 5,5-дикарбэтокси-4,4-диметил-3,3-диэтилдипирролилметана-2,2-[(CEO)₂(Me)₂(Et)₂DPM].

Рис. 2. Графическое определение теплового эффекта растворения $H_4L_{(\kappa)}$ в растворе КОН при бесконечном разведении соединений 1 и 2.

менения энтальпии, $\Delta H'_{\text{эксп}}$ и известные мольные тепловые эффекты $\Delta_{\text{r}}H$. Для изучаемых реакций в расчет вводят оценочные значения $\lg K$, приближенные значения $\Delta_{\text{r}}H$ вводить не требуется. Рас-

чет $\Delta_{\rm r} H$ изучаемых реакций проводится путем минимизации функции вида:

$$F = \sum (\Delta H'_{\text{aver}} - \Delta H'_{\text{pace}})_1^2 \omega_1, \tag{9}$$

где $\Delta H'_{\text{эксп}}$ — изменение энтальпии системы в результате протекания исследуемых реакций. Минимизируемая функция F представляет собой остаточную сумму квадратов отклонений при решении системы линейных уравнений методом взвешенных наименьших квадратов. Полученные значения представлены в табл. 4.

В работе [20] представлены данные по энтальпиям растворения кристаллического тетра-4-карбоксиметаллофталоцианина меди CuPc(4-COOH)₄ (соединение 3) в водных растворах КОН. Комплексы 1—3 растворяются в водных растворах щелочи с большим экзоэффектом, который минимален у соединения 3 и составляет —78.5 кДж/моль. У комплексов 2 и 1, т.е. содержащих фрагменты тиофенола и фенола, он равен уже —120.5 кДж/моль и —92.3 кДж/моль соответственно.

Можно предположить, что все четыре -CO-OH-группировки этих соединений эквивалентны по способности отщеплять H^+ в растворе. Вероятно, в процессе титрования водных растворов соединений 1-3 первоначально будет происходить изменение pH за счет ионизации четырех карбоксильных групп, которые вероятно могут в

Таблица 3. Энтальпии растворения соединений **1** и **2** в растворе КОН при различных концентрациях и T = 298.15 K

$m \times 10^{-3}$, Γ (1)	$C_{ m KOH} imes 10^4$, моль/л	$-\Delta_{ m sol}H$, кДж/моль	$m \times 10^{-3}$, Γ (2)	$-\Delta_{ m sol}H$, кДж/моль
0.0010 0.0011 0.0010	1.162	95.22 ± 0.27 95.16 ± 0.28 95.38 ± 0.28	0.0010 0.0011 0.0012	122.73 ± 0.26 122.81 ± 0.28 122.69 ± 0.28
0.0020 0.0021 0.0020	2.325	97.65 ± 0.26 97.72 ± 0.27 97.84 ± 0.25	0.0020 0.0020 0.0020	125.16 ± 0.25 125.02 ± 0.27 125.10 ± 0.25
0.0030 0.0030 0.0031	3.448	100.08 ± 0.28 100.16 ± 0.28 100.05 ± 0.26	0.0031 0.0030 0.0031	127.58 ± 0.26 127.61 ± 0.28 127.59 ± 0.27

Таблица 4. Константы ступенчатой диссоциации и энтальпии диссоциации соединений 1 и 2 при температуре 298.15 К (кДж/моль), рассчитанные по программе "HEAT"

Процесс	$\Delta_{\rm r}H_{ m dis}\left(1 ight)$	pK_i	$\Delta_{\rm r}H_{ m dis}\left(2 ight)$	pK_i
$H_4L \rightarrow H_3L^- + H^+$	32.3 ± 1.5	4.89 ± 0.35	41.1 ± 1.8	5.25 ± 0.35
$\mathrm{H_3L^-}\!\to\!\mathrm{H_2L^{2-}}\!+\!\mathrm{H^+}$	85.5 ± 1.7	6.31 ± 0.35	96.5 ± 1.7	7.11 ± 0.35
$\mathrm{H_2L^{2-}} \rightarrow \mathrm{HL^{3-}} + \mathrm{H^+}$	109.4 ± 1.9	8.42 ± 0.35	129.3 ± 1.6	9.22 ± 0.35
$HL^{3-} \rightarrow L^{4-} + H^+$	170.3 ± 1.6	11.32 ± 0.35	218.5 ± 1.9	12.55 ± 0.35

Форма соединения	Состояние	$\Delta_{\rm f} H^{\circ}(298.15 \text{ K}), (1)$	$\Delta_{\rm f} H^{\circ}(298.15 \text{ K}), (2)$	
H ₄ L	кр.	2996.6 ± 1.9	2819.2 ± 1.9	
	p-p, H ₂ O, ст. с., гип. недис.	2729.1 ± 1.9	2436.5 ± 1.9	
H_3L^-	p-p, H ₂ O, ст. с., гип. недис	2761.4 ± 1.9	2477.6 ± 1.9	
H_2L^{2-}	p-p, H ₂ O, ст. с., гип. недис.	2846.9 ± 1.9	2574.7 ± 1.9	
HL ³⁻	p-p, H ₂ O, ст. с., гип. недис.	2956.3 ± 1.9	2703.4 ± 1.9	
L ⁴⁻	р-р, H ₂ O, ст. с.	3126.6 ± 1.9	2921.9 ± 1.9	

Таблица 5. Стандартные энтальпии образования соединений **1** и **2** и продуктов его диссоциации в водном растворе (кДж/моль)

заметной степени протонировать или образовывать водородную связь с атомами азота в Рс, однако, вышеуказанные взаимодействия должны быть слабыми.

Термодинамические характеристики растворения фталоцианина позволят нам получить много полезной информации о состоянии Рс в растворах. Значения стандартной энтальпии образования Рс в водном растворе получены в данной работе впервые. Они являются ключевыми величинами в термохимии Рс и открывают возможность проведения строгих термодинамических расчетов в системах с Рс. Приведенные значения термодинамических характеристик существенно пополнят банк термохимических данных для фталоцианинов. Полученные значения представлены в табл. 5.

Работа выполнена в Научно-исследовательском институте термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках государственного задания, проект № FZZW-2023-0008. Исследование выполнено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГУХТ (при поддержке Министерства науки и высшего образования РФ, грант № 075-15-2021-671).

СПИСОК ЛИТЕРАТУРЫ

- 1. Wöhrle D., Schnurpfeil G., Makarov S.G. et al. // Макрогетероциклы. 2012. № 5 (3). С. 191. https://doi.org/10.6060/mhc2012.120990w
- 2. Зуев К.В., Перевалов В.П., Винокуров Е.Г. и др. // Там же. 2016. Т. 9. № 3. С. 250. https://doi.org/10.6060/mhc160212z
- 3. Лебедева Н.Ш., Юрина Е.С., Губарев Ю.А., Майзлиш В.Е. // Биоорганическая химия. 2016. Т. 42. № 1. С. 36.
- Xie D., Pan W., Jiang Y.D., Li Y.R. // Materials Letters. 2003. V. 57. P. 2395. https://doi.org/10.1016/S0167-577X(02)01242-9

- Lam M.K., Kwok K.L., Tse S.C. et al. // Optical Materials. 2006. V. 28. P. 709.
- Koifman O.I. et al. // Macroheterocycles. 2020. V. 13

 (4). P. 311.
 https://doi.org/10.6060/mhc200814k
- 7. Березин Д.Б., Макаров В.В., Знойко С.А. и др. // Менделеевские сообщения. 2020. Т. 30. Р. 621. https://doi.org/10.1016/j.mencom.2020.09.023
- 8. *Шапошников Г.П., Кулинич В.П., Майзлиш В.Е.* // Модифицированные фталоцианины и их структурные аналоги. Монография / Под ред. О.И. Койфмана. М.: КРАСАНД, 2012. 480 с.
- Журавлева Ю.М., Майзлиш В.Е., Шапошников Г.П. и др. // Жидкие кристаллы и их практическое использование. 2012. Вып. 2 (40). С. 5.
- 10. *Kudrik E.V., Smirnova A.I., Maizlish V.E. et al.* // Rus. Chem. Bulletin, International Edition. 2006. V. 55. № 6. P. 1028. https://doi.org/10.1007/s11172-006-0372-2.
- 11. *Lytkin A.I.*, *Chernikov V.V.*, *Krutova O.N.*, *Skvortsov I.A.* // J. Therm. Anal. Calorim. 2017. T. 130. P. 457. https://doi.org/10.1007/s10973017-6134-6
- Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001.
 T. 73. P. 1625.
 https://doi.org/10.1351/pac200173101625
- 13. Тахистов А.В., Пономарев Д.А. Органическая масс-спектрометрия. С.-Петербург: ВВМ, 2002. С. 346.
- 14. *Закиров Д.Р., Базанов М.И., Волков А.В. и др. //* Журн. физ. химии. 2000. Т.74. № 10. Р. 1899.
- Cohen N., Benson S.W. // Chemical Reviews. 1993.
 V. 93. № 7. P. 2419.
- 16. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Наука, 1982. С. 262.
- 17. Термические константы веществ / Спр. под ред. В.П. Глушко Вып. III. М.: ВИНИТИ. 1965—1971.
- 18. *Бородин В.А., Васильев В.П., Козловский Е.В.* // Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
- Tyuninaa E. Yu., Krutova O.N., Lytkin A.I. // Thermochimica Acta. 2020. T. 690 P. 178704. https://doi.org/10.1016/j.tca.2020.178704
- 20. *Крутова О.Н.*, *Майзлиш В.Е.*, *Лыткин А.И. и др.* // Журн. физ. химии. 2023. В печати.