ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УЛК 544.344.3

РАВНОВЕСИЕ ЖИДКОСТЬ—ПАР В СИСТЕМЕ ТОЛУОЛ—МЕТАНОЛ—БРОМИД *N*-ОКТИЛХИНОЛИНИЯ

© 2023 г. А. Н. Евдокимов^{а,*}, А. В. Курзин^а, А. А. Таразанов^а, С. О. Шорникова^a, М. А. Феофанова^b

^aСанкт-Петербургский государственный университет промышленных технологий и дизайна, Санкт-Петербург, Россия

^bТверской государственный университет, Тверь, Россия
 *e-mail: eanchem@mail.ru
 Поступила в редакцию 07.01.2023 г.
 После доработки 06.02.2023 г.
 Принята к публикации 10.02.2023 г.

Исследовано парожидкостное равновесие в системе толуол—метанол—бромид N-октилхинолиния при $101.3 \ \kappa \Pi$ а и различных концентрациях органической соли. Установлена возможность применения хинолиниевой соли в качестве разделяющего агента азеотропной смеси толуол—метанол. Для разрушения азеотропы и разделения смешанного растворителя на компоненты необходима концентрация (в мольных долях) бромида N-октилхинолиния 0.55 и более.

 $\mathit{Knoveebse}$ слова: равновесие жидкость—пар, метанол—толуол, бромид N -октилхинолиния, азеотропные системы, экстрактивная дистилляция

DOI: 10.31857/S0044453723070087, EDN: SKNOJN

Смесь толуола и метанола является участником процессов тонкого и основного органического синтезов, например, в качестве смешанного растворителя или разбавителя, компонента реакционной массы при алкилировании ароматических углеводородов метанолом и др. Для разделения азеотропной смеси толуол-метанол, содержащей 88.2% метанола ($t_{\text{кип}} = 337.02 \text{ K}$ при 101.3 кПа [1]), применяются различные методы, в том числе экстрактивная дистилляция и ее разновидность — солевая ректификация. В [2] собраны литературные данные о равновесии жидкостьпар в тройных системах метанол-толуол-соль, а также о применении различных неорганических и органических солей для разделения азеотропной системы метанол-толуол. В дополнение к информации, приведенной в [2], следует также упомянуть недавние результаты по применению ионных жидкостей – ацетатов 1-децил-3-метилимидазолия, 1-тетрадецил-3-метилимидазолия и триоктилметиламмония для разделения указанной азеотропной системы [3]. Органические соли с *N*-алкилхинолиниевыми катионами, наряду с другими солями с азотсодержащими гетероциклическими катионами: имидазолиевым, имидазолиниевым, пиридиниевым, пирролидиниевым и др., применяются в качестве активных компонентов лекарственных препаратов, ингибиторов кислотной коррозии, поверхностно-активных

веществ и др. Перспективным направлением применения хинолиниевых солей является синтез ионных жидкостей на их основе. Опубликованы многочисленные данные о получении и свойствах различных хинолиниевых солей, а также двойных и тройных систем на их основе, в том числе ионных жидкостей с хинолиниевым катионом [4—6].

Цель работы — изучение возможности применения бромида *N*-октилхинолиния

для разделения азеотропной смеси толуол—метанол при 101.3 кПа. Парожидкостное равновесие в тройных системах "смешанный растворитель — ионная жидкость, содержащая *N*-октилхинолиниевый катион", было изучено для смесей 1-пропанол—вода, 2-пропанол—вода и 1-гексен—гексан [7, 8]. Ранее нами установлена возможность применения хлорида *N*-бензилхинолиния для разделения азеотропной системы метанол—бензол [9]. Выбор бромида *N*-октилхинолиния объясняется его температурой плавления (66—68°C), поэтому эта хинолиниевая соль, в отличие от хло-

Таблица 1. Равновесие жидкость—пар в системе толуол (1) — метанол (2) при $101.3 \text{ к}\Pi a$

x'_1	y_1	<i>T</i> , K
0.000	0.000	337.75
0.031	0.049	337.15
0.096	0.107	336.70
0.124	0.122	336.70
0.177	0.144	336.75
0.204	0.152	336.85
0.269	0.163	337.05
0.332	0.171	337.25
0.380	0.174	337.35
0.426	0.179	337.50
0.558	0.186	337.85
0.675	0.194	338.50
0.753	0.204	339.30
0.794	0.213	340.00
0.860	0.237	342.50
0.899	0.271	345.35
0.912	0.291	350.95
0.939	0.343	354.65
0.958	0.413	360.25
0.965	0.592	375.15
0.983	0.634	379.25
1.000	1.000	383.75

Примечание. u(x) = u(y) = 0.002, u(T) = 0.05 K, u(P) = 0.1 кПа.

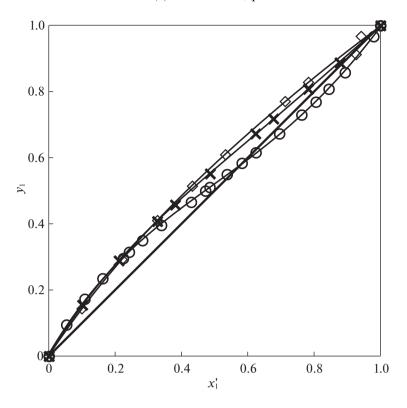
рида N-бензилхинолиния ($t_{\text{пл}} = 158^{\circ}\text{C}$), может быть отнесена к ионным жидкостям. С другой стороны, задачей работы было сравнение влияния радикала октила по сравнению с бензилом в хинолиниевой соли, а также всаливающий/высаливающий эффект для полярного и неполярного компонентов азеотропной смеси толуол—метанол. Работа является продолжением цикла наших исследований по изучению влияния органических солей на равновесие жидкость—пар в двойных азеотропных системах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Толуол ("ч.д.а.", 99.5%) выдерживали над натрием и перегоняли. Метанол ("х.ч.", 99.6%) су-

шили кипячением в присутствии магния и йода с последующей перегонкой и хранением над молекулярными ситами. Бромид *N*-октилхинолиния синтезировали и очищали по опубликованным методикам [4, 5]: смесь хинолина и н-октилбромида (1:2) в безводном ацетонитриле кипятили на водяной бане в течение 48 ч, по окончании растворитель удаляли. К остатку добавляли диэтиловый эфир и охлаждали, выпавшие кристаллы отделяли, промывали и дважды перекристаллизовывали из диэтилового эфира. Температура плавления синтезированного бромида *N*-октилхинолиния после сушки в вакууме при 75°C в течение 40 ч составила 67-68°C, что соответствует литературным данным [5]. Перед использованием хинолиниевую соль дополнительно сушили при 75°C в вакууме в течение 10 ч. Смеси метанола, толуола и бромида N-октилхинолиния соответствующих составов готовили гравиметрическим методом. Парожидкостное равновесие изучали при 101.3 кПа в модифицированном приборе Отмера, использованном нами ранее при изучении равновесия жидкость-пар в системе хлорид N-бензилхинолиния—метанол—бензол [9]. Точность определения температуры 0.05 K (Hewlett-Packard Quartz Thermometer 2804A). Температуру фазового равновесия в системе снимали после 60 минут ее постоянства. Мольные доли растворителей в жидкой (x_i , без учета содержания соли) и паровой (y_i) фазах определяли с помощью газовой хроматографии на хроматографе Agilent 7890А (условия: пламенно-ионизационный детектор, капиллярная колонка DB-WAX (30 м × \times 0.25 мм \times 0.25 мкм); температура испарителя, камеры и детектора 160°C, 140°C и 250°C соответственно. Газ-носитель – аргон, скорость потока 30 см³ мин⁻¹. Калибровку газового хроматографа проводили по приготовленным гравиметрически смесям толуола и метанола).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


В табл. 1 приведены экспериментальные данные о парожидкостном равновесии в системе толуол—метанол при $101.3 \text{ к}\Pi a$, а в табл. 2 и на рис. 1- для системы толуол—метанол—бромид N-октилхинолиния.

Содержание толуола в паровой фазе увеличивается с ростом концентрации хинолиниевой соли в жидкой смеси толуол—метанол. Бромид *N*октилхинолиния обладает высаливающим эффектом и его добавление приводит к разрушению азеотропы в рассматриваемой системе. Как видно из рисунка, для разделения азеотропной системы толуол—метанол необходима концентрация в мольных долях бромида *N*-октилхинолиния 0.55 и более. Таким образом, впервые для разделения компонентов азеотропной смеси толуол—мета-

Таблица 2. Равновесие жидкость—пар в системе толуол (1) — метанол (2) — бромид N-октилхинолиния (3) при 101.3 к Π а

101.3 кПа		1		_	1	1	,
x_3	x_1^{\prime}	y_1	<i>T</i> , K	x_3	<i>x</i> ' ₁	y_1	T, K
0.451	0.053	0.095	364.15	0.551	0.562	0.619	375.75
0.452	0.108	0.173	363.05	0.552	0.623	0.673	376.25
0.451	0.162	0.235	362.45	0.551	0.637	0.684	376.40
0.451	0.224	0.296	362.10	0.551	0.677	0.718	377.05
0.452	0.242	0.315	361.95	0.551	0.730	0.760	377.95
0.452	0.282	0.350	362.00	0.552	0.782	0.808	379.05
0.452	0.339	0.396	362.25	0.552	0.835	0.850	380.15
0.451	0.429	0.466	362.65	0.552	0.877	0.888	381.15
0.451	0.472	0.500	363.15	0.551	0.969	0.971	383.55
0.452	0.485	0.511	363.30	0.601	0.053	0.080	390.45
0.451	0.537	0.550	364.10	0.601	0.099	0.144	389.50
0.452	0.582	0.584	365.15	0.602	0.163	0.223	388.70
0.452	0.624	0.616	366.25	0.602	0.220	0.293	388.00
0.452	0.695	0.673	368.45	0.601	0.268	0.347	387.45
0.451	0.762	0.730	370.60	0.601	0.327	0.411	387.05
0.451	0.805	0.769	372.30	0.602	0.389	0.471	386.70
0.452	0.844	0.808	374.20	0.601	0.432	0.515	386.45
0.451	0.893	0.858	376.50	0.601	0.475	0.555	386.30
0.451	0.979	0.967	381.90	0.601	0.532	0.610	386.20
0.552	0.048	0.079	378.05	0.602	0.647	0.715	386.15
0.552	0.101	0.155	377.10	0.603	0.712	0.771	386.25
0.552	0.160	0.230	376.30	0.602	0.744	0.798	386.40
0.551	0.211	0.289	375.75	0.602	0.782	0.829	386.55
0.551	0.256	0.337	375.40	0.601	0.837	0.875	386.85
0.551	0.327	0.408	375.15	0.601	0.926	0.913	387.05
0.552	0.375	0.452	375.00	0.602	0.938	0.953	387.40
0.552	0.381	0.458	375.05	0.602	0.941	0.968	387.60
0.552	0.434	0.507	375.15	0.601	0.982	0.987	387.90
0.551	0.486	0.552	375.40				

Примечание. u(x) = u(y) = 0.002, u(T) = 0.05 K, u(P) = 0.1 кПа.

Рис. 1. Равновесие жидкость—пар в системе толуол (1) — метанол (2) — бромид *N*-октилхинолиния (3) при 101.3 кПа: $-\bigcirc$, $x_3 = 0.45$; $-\times$, $x_3 = 0.55$; $-\diamondsuit$, $x_3 = 0.60$. Мольная доля толуола (x_1) в пересчете на бессолевую основу.

нол был использован бромид N-октилхинолиния, который может быть рекомендован для разрушения других азеотропных систем, состоящих из полярного и неполярного компонентов, например, из спирта и углеводорода.

СПИСОК ЛИТЕРАТУРЫ

- He S., Fan W., Huang H. et al. // ACS Omega. 2021.
 V. 6. № 50. P. 34736. https://doi.org/10.1021/acsomega.1c05164
- 2. *Kurzin A.V., Evdokimov A.N., Feofanova M.A., Baranova N.V.* // J. Chem. Eng. Data. 2017. V. 62. № 3. P. 889. https://doi.org/10.1021/acs.jced.6b00279
- Li W., Guan T., Cao Y. et al. // Fluid Phase Equilib. 2020. V. 506. Article ID 112412. https://doi.org/10.1016/j.fluid.2019.112412
- 4. *Zawadzki M., Domańska U.* // J. Chem. Thermodyn. 2012. V. 48. P. 276. https://doi.org/10.1016/j.jct.2011.12.037

- Marek J., Buchta V., Soukup O. et al. // Molecules. 2012. V. 17. № 6. P. 6386. https://doi.org/10.3390/molecules17066386
- Królikowska M., Królikowski M., Domańska U. // Ibid. 2020. V. 25. № 23. P. 5687. https://doi.org/10.3390/molecules25235687
- 7. Janakey Devi V.K.P., Sai P.S.T., Balakrishnan A.R. // Chem. Eng. Commun. 2018. V. 205. № 6. P. 772. https://doi.org/10.1080/00986445.2017.1418738
- 8. *Lei Z., Arlt W., Wasserscheid P.* // Fluid Phase Equilib. 2007. V. 260. № 1. P. 29. https://doi.org/10.1016/j.fluid.2006.06.009
- 9. *Евдокимов А.Н., Курзин А.В., Таразанов А.А., Шорникова С.О.* // Журн. физ. химии. 2022. Т. 96. № 8. С. 1222. [A.N. Evdokimov, A.V. Kurzin, A.A. Tarazanov, and S.O. Shornikova, Russ. J. Phys. Chem. A **96**, 1828 (2022). https://doi.org/10.1134/S003602442208009X]. https://doi.org/10.31857/S004445372208009X