_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УЛК 541.49:546.56

ПРОТОЛИТИЧЕСКИЕ РАВНОВЕСИЯ L-АЛАНИЛ-L-ГИСТИДИНА В ВОДНОМ РАСТВОРЕ

© 2023 г. С. Н. Гридчин a,* , В. М. Никольский b

^aИвановский государственный химико-технологический университет, Иваново, Россия

^bТверской государственный университет, Тверь, Россия

*e-mail: sergei_gridchin@mail.ru

Поступила в редакцию 08.02.2023 г.

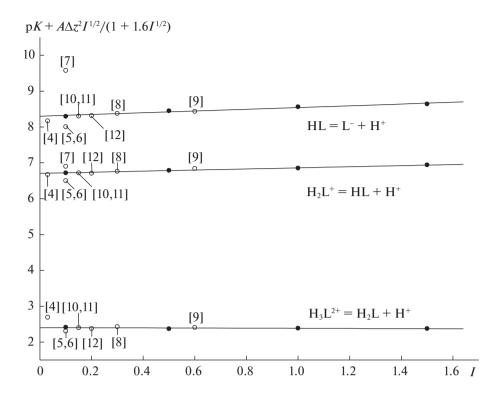
После доработки 09.03.2023 г.

Принята к публикации 13.03.2023 г.

Потенциометрическим методом определены константы ступенчатой диссоциации L-аланил-L-гистидина (HL) при 298.15 К и значениях ионной силы 0.1, 0.5, 1.0, 1.5 (KNO₃). Прямым калориметрическим методом измерены тепловые эффекты реакций диссоциации дипептида. При совместном использовании результатов термохимических и потенциометрических исследований, выполненных при идентичных экспериментальных условиях, рассчитаны стандартные термодинамические характеристики (р K° , $\Delta_{\rm dis}G^{\circ}$, $\Delta_{\rm dis}H^{\circ}$, $\Delta_{\rm dis}S^{\circ}$) протолитических равновесий HL. Результаты сопоставлены с соответствующими данными по родственным соединениям.

Ключевые слова: дипептиды, водные растворы, ионная сила, протолитические равновесия, термодинамические характеристики

DOI: 10.31857/S0044453723080071, EDN: QURSQD


Ранее [1—3] в нашей лаборатории были исследованы равновесия кислотно-основного взаимодействия в водных растворах некоторых дипептидов аланилового ряда (D,L-аланил-D,L-аспарагина, D,L-аланил-глицина, D,L-аланил-D,L-серина, D,L-аланил-D,L-аланина, D,L-аланил-D,L-аланил-L-изолейцина), проанализировано влияние ионной силы раствора на реализацию исследованных процессов, и определены стандартные термодинамические характеристики соответствующих реакций. В настоящей работе объектом исследования является L-аланил-L-гистидин (HL).

В литературе отсутствуют сведения о тепловых эффектах реакций ступенчатой диссоциации указанного дипептида. Константы диссоциации опубликованы рядом авторов [4–12]. При этом результаты работ [8–12] удовлетворительно согласуются между собой (рис. 1). Исследования были выполнены при низких значениях ионной силы. Влияние ионной силы на протолитические равновесия L-аланил-L-гистидина не рассматривалось. В то же время информация о концентрационной зависимости термодинамических параметров (рK, $\Delta_{dis}G$, $\Delta_{dis}H$, $\Delta_{dis}S$) соответствующих реакций имеет первостепенное значение для описания равновесий в растворах соединений с пространственным разделением зарядовых центров (амино- и карбоксилатных групп), поскольку

большинство существующих схем теоретической оценки влияния концентрационных условий на изменение термодинамических характеристик реакций основано на моделях электростатических взаимодействий в предположении геометрически правильной сферической или эллипсоидальной формы заряженных частиц, и приемлемые по точности результаты могут быть получены лишь после определения индивидуальных для каждой конкретной системы эмпирических параметров экстраполяционных уравнений, определение которых, в свою очередь, требует предварительного экспериментального исследования соответствующих равновесий в широком интервале значений ионной силы раствора. Поэтому целью настоящей работы является исследование процессов кислотно-основного взаимодействия в растворах L-аланил-L-гистидина при нескольких значениях ионной силы и определение значений стандартных термодинамических характеристик соответствующих реакций.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Протолитические равновесия в растворах L-аланил-L-гистидина исследованы методом потенциометрического титрования при 298.15 К и значениях ионной силы 0.1, 0.5, 1.0 и 1.5 моль/л. В качестве "фонового" электролита использован

Рис. 1. Влияние ионной силы на константы ступенчатой диссоциации L-аланил-L-гистидина при 298.15 К (белые символы — данные литературы, черные символы — результаты, полученные в настоящей работе).

нитрат калия. Точный объем раствора дипептида помещали в термостатированную потенциометрическую ячейку. Начальная концентрация дипептида варьировалась в интервале $4 \times 10^{-3} - 8 \times 10^{-3}$ $\times 10^{-3}$ моль/л. Титрование проводили стандартными растворами гидроксида калия и азотной кислоты, содержащими "фоновый" электролит, чтобы избежать изменения ионной силы в процессе титрования за счет разбавления. Для определения равновесной концентрации ионов водорода измеряли ЭДС цепи, состоящей из стеклянного электрода ЭСЛ-43-07 и насыщенного хлорсеребряного электрода ЭВЛ-1МЗ. Потенциал стеклянного электрода контролировали потенциометром Р-363/3. В качестве нуль-инструмента был использован рН-метр-миливольтметр рН-340. Точность измерения потенциала составляла ±0.1 мВ. Температуру потенциометрической ячейки и электродов поддерживали с точностью ± 0.05 К. Перед снятием каждой кривой титрования потенциометрическую установку калибровали по стандартным растворам HNO₃ и KOH, содержащими "фоновый" электролит для создания необхолимой ионной силы.

Калориметрические измерения проводили в ампульном калориметре с изотермической оболочкой, термисторным датчиком температуры КМТ-14 и автоматической записью изменения температуры во времени. Работу калориметра

проверяли по теплоте растворения хлорида калия в воде. Полученное значение $\Delta_{sol}H(KCl, p-p,$ ∞ H₂O) = 17.24 \pm 0.12 кДж/моль хорошо согласуется с наиболее надежными литературными данными [13, 14], что свидетельствует об отсутствии заметных систематических ошибок в работе калориметра. При 298.15 К были измерены теплоты взаимодействия растворов HNO₂ (0.9484 моль/л) с 0.008-0.0159 М растворами дипептида. Теплоты протонирования измеряли при 298.15 K и I = 0.1; 0.5, 1.0, 1.5 (KNO₃) в областях pH $3.6 \rightarrow 2.7, 7.2 \rightarrow$ \rightarrow 6.4, 9.1 \rightarrow 8.6. Для внесения необходимых поправок определены также теплоты разведения растворов азотной кислоты в растворе "фонового" электролита при соответствующих значениях температуры и ионной силы.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Обработку потенциометрических данных осуществляли по программе PHMETR, предназначенной для расчета констант равновесия с произвольным числом реакций по измеренной равновесной концентрации одной из частиц [15, 16]. В основу работы программы положен принцип поиска минимума критериальной функции F путем варьирования в каждой итерации подлежащих определению значений констант с использо-

Процесс	I = 0.1	I = 0.5	I = 1.0	<i>I</i> = 1.5
$H_3L^{2+} = H^+ + H_2L^+$	2.63 ± 0.04	2.71 ± 0.04	2.78 ± 0.04	2.80 ± 0.04
$H_2L^+ = H^+ + HL$	6.72 ± 0.04	6.79 ± 0.04	6.85 ± 0.04	6.94 ± 0.04
$H\Gamma = H_+ + \Gamma$	8.08 ± 0.03	8.11 ± 0.03	8.17 ± 0.04	8.22 ± 0.04

Таблица 1. Величины рK ступенчатой диссоциации L-аланил-L-гистидина при 298.15 K

ванием модифицированного алгоритма Хука—Дживса [17]. Критериальная функция имеет вид:

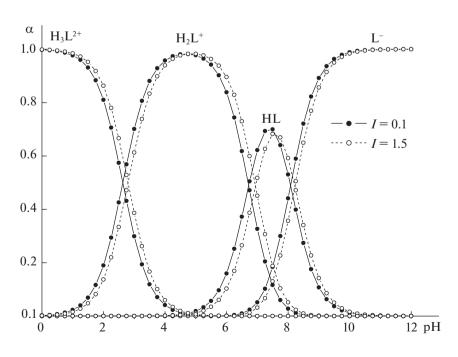
$$F = S(\lg[H^+]_{j,paccq})^2,$$
 (1)

где $[H^+]_{j, \text{эксп}}$, $[H^+]_{j, \text{рассч}}$ — равновесные концентрации ионов H^+ , измеренные экспериментально и рассчитанные при текущих значениях констант равновесий. Расчет равновесных концентраций осуществлялся по методу Бринкли [18]. Величины констант диссоциации исследуемых дипептидов, найденные при 298.15 К и I=0.1, 0.5, 1.0 и 1.5 (KNO₃), представлены в табл. 1.

Из диаграммы протолитических равновесий в растворах L-аланил-L-гистидина (рис. 2) видно, что тепловые эффекты реакций диссоциации ($\Delta_{\rm dis}H$) дипептидов по первой и последней ступеням могут быть найдены как разности теплот смешения ($\Delta_{\rm mix}H$) и разведения ($\Delta_{\rm dil}H$) соответствующих реакций протонирования ($\Delta_{\rm prot}H$):

$$H^{+} + H_{X-1}L^{X-2} = H_{X}L^{X-1},$$
 (2)

$$\Delta_{\text{dis}}H(\mathbf{H}_{X}\mathbf{L}^{X-1}) = -\Delta_{\text{prot}}H(\mathbf{H}_{X-1}\mathbf{L}^{X-2}) = = -(\Delta_{\text{mix}}H - \Delta_{\text{dil}}H)C/\Delta[\mathbf{H}_{X}\mathbf{L}^{X-1}],$$
(3)


где $\Delta_{\rm mix}H$ — тепловой эффект смешения раствора ${\rm HNO_3}$ с раствором дипептида в присутствии "фонового" электролита в соответствующей области ${\rm pH}$; $\Delta_{\rm dil}H$ — тепловой эффект разведения раствора ${\rm HNO_3}$ в "фоновом" электролите при том же значении ионной силы; C — аналитическая концентрация азотной кислоты с учетом разведения до объема калориметрической жидкости; $\Delta[{\rm H}_X{\rm L}^{X-1}]$ — изменение равновесных концентраций соответствующих частиц ${\rm H_3L^{2+}}$ и ${\rm HL}$ в ходе калориметрического опыта.

При взаимодействии растворов азотной кислоты и L-аланил-L-гистидина в области рН $7.2 \rightarrow 6.4$ имеют место следующие равновесия:

$$H^+ + HL = H_2L^+, \tag{4}$$

$$2H^{+} + L^{-} = H_{2}L^{+}. \tag{5}$$

$$H^+ + L^- = HL.$$
 (6)

Рис. 2. Диаграммы протолитических равновесий в растворах L-аланил-L-гистидина при 298.15 K, I = 0.1 и 1.5 (KNO $_3$).

Процесс	$\Delta_{ m dis}H$, Дж/моль					
	I = 0.1	I = 0.5	I = 1.0	I = 1.5		
$H_3L^{2+} = H^+ + H_2L^+$	652 ± 139	917 ± 114	1532 ± 133	2072 ± 142		
$H_2L^+ = H^+ + HL$	32934 ± 201	33605 ± 202	34240 ± 187	34719 ± 199		
$HL = H^+ + L^-$	44738 ± 169	45742 ± 178	46530 ± 171	47485 ± 130		

Таблица 2. Тепловые эффекты реакций ступенчатой диссоциации L-аланил-L-гистидина при 298.15 К

Тепловой эффект реакции (4) протонирования H_2L может быть рассчитан на основании уравнения:

$$\Delta_{\text{mix}}H - \Delta_{\text{dil}}H = (\Delta[H_2L^+]\Delta_{\text{prot}}H(HL) - -\Delta[L^-]\Delta_{\text{prot}}H(L^-))/C,$$
(7)

где $\Delta[H_2L^+]$, $\Delta[L^-]$ — изменение равновесных концентраций соответствующих частиц в ходе калориметрического опыта; C — аналитическая концентрация азотной кислоты с учетом разведения до объема калориметрической жидкости. Полученные значения тепловых эффектов реакций диссоциации L-аланил-L-гистидина приведены в табл. 2.

Величины ΔH и $\lg K$, найденные при фиксированных значениях ионной силы, позволяют рассчитать термодинамические характеристики соответствующих реакций в стандартном растворе. Для экстраполяции концентрационных тепловых эффектов и констант исследуемых протолитических равновесий на нулевое значение ионной силы использованы уравнения с одним индивидуальным параметром [19]:

$$\Delta_{\text{dis}}H - \Delta z^2 \Psi(I) = \Delta_{\text{dis}}H^{\circ} + bI, \tag{8}$$

$$pK + A\Delta z^2 I^{1/2} / (1 + 1.6I^{1/2}) = pK^{\circ} + bI.$$
 (9)

где $\Delta_{\rm dis}H$, $\Delta_{\rm dis}H^{\circ}$, рK, р K° — тепловые эффекты реакции и отрицательные десятичные логарифмы констант диссоциации соответственно при конечной и нулевой ионных силах; A — постоянная теории Дебая—Хюккеля; b, δ — эмпирические коэффициенты; Δz^2 — разность квадратов зарядов продуктов реакции и реагирующих частиц; $\Psi(I)$ функция ионной силы, вычисленная теоретически [19]. Величины стандартных термодинамических характеристик (р K° , $\Delta_{dis}G^{\circ}$, $\Delta_{dis}H^{\circ}$, $\Delta_{dis}S^{\circ}$) протолитических равновесий L-аланил-L-гистидина приведены в табл. 3 вместе с соответствующими данными для ряда родственных соединений, исследованных в нашей лаборатории [1, 2, 20-26] с использованием аналогичных экспериментальных методик. В таблице также приведены значения температурозависимых ($\Delta_{\rm r} H_3^{\circ}$) и температуронезависимых ($\Delta_{\rm r} H_{\rm H3}^{\circ}$) составляющих энтальпии реакции, рассчитанные в соответствии со схемой Герни-Андерегга [27, 28]:

$$\Delta_{r}H_{3}^{\circ} = A(T/v - 1)\exp(T/v) =$$

$$= (\Delta_{s}S^{\circ} + 33.4)(T - v),$$
(10)

$$\Delta_{\rm r} H_{\rm H3}^{\circ} = -RT \ln K^{\circ} + A \exp(T/\nu) - -RT \ln 55.506,$$
(11)

где A — эмпирический коэффициент; v — характеристическая температура воды; при этом полагают, что величина $\Delta_r H_3^\circ$ пропорциональна электростатическому вкладу, а величина $\Delta_r H_{\rm H3}^\circ$ — неэлектростатическому (или т.н. "ковалентному") вкладу в изменение энтальпии реакции.

Полученные результаты свидетельствуют, что присутствие метильной группы в N-терминальных фрагментах дипептидов не оказывает принципиального влияния на величины термодинамических характеристик реакций диссоциации соответствующих функциональных групп. Некоторое увеличение $\Delta_{\mathrm{dis}}H^{\circ}$ реакции диссоциации "бетаиновой" группы при замене N-терминального остатка глицина на остаток α-аланина может быть результатом положительного индуктивного эффекта СН₃-группы. Однако, электронодонорное действие этой группы, по-видимому. не является единственным фактором, и величина $\Delta_{\rm dis}H^{\circ}$ определяется более сложным внутримолекулярным распределением электронной плотности в результате взаимодействия между неподеленной парой электронов атома азота и π-электронной системой двойной связи С=О в пептидной группе –СО–NН– и взаимного влияния "бетаинового", имидазольного и карбоксилатного фрагментов дипептидов. Особенности изменения термодинамических параметров протолитических равновесий в растворах дипептидов при введении различных боковых заместителей в С-терминальные остатки глицина подробно рассмотрены в работах [20, 29, 30]. В протонированной форме гистамина HL⁺ взаимодействие ⁺NH₃группы с электронной системой гетероцикла "ослаблено наличием $-CH_2CH_2$ -связей" [22], и тепловой эффект диссоциации "бетаиновой" группы близок по величине к теплотам диссоциации первичных аминов. Присутствие карбоксильной группы в L-гистидине и соответствующих дипептидах существенно уменьшает эндотермичность ионизации + NH₃-группы. При этом

Таблица 3. Стандартные термодинамические характеристики реакций ступенчатой диссоциации некоторых дипептидов, аминов и аминокислот

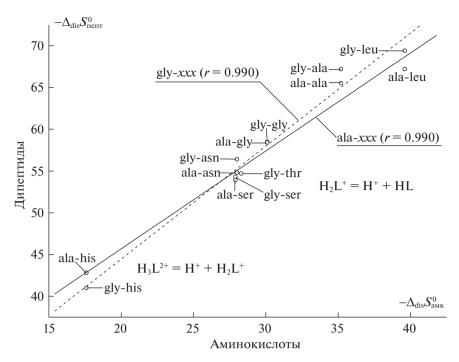
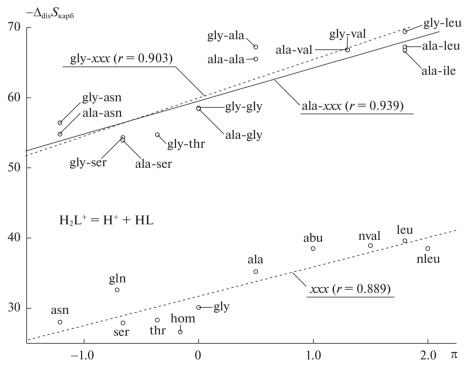

А C ⁰ А П ⁰ А						
Процесс	p <i>K</i> °	$\Delta_{ m dis}G^{\circ},$ кДж/моль	$\Delta_{ m dis} H^{\circ},$ кДж/моль	$\Delta_{ m r} H_{ m H3}^{\circ}, \ $ кДж/моль	$-\Delta_{ m r}H_3^\circ,$ кДж/моль	$-\Delta_{\rm dis}S^{\circ},$ Дж/(моль K)
L-аланил-L-гистидин, H ₃ N ⁺ -CH(CH ₃)-CO-NH-CH(CH ₂ C ₃ H ₃ N ₂)-COO ⁻						
$H_3L^{2+} = H^+ + H_2L^+$	2.40 ± 0.04	13.70 ± 0.23	0.93 ± 0.14	6.89	5.96	42.8 ± 0.9
$H_2L^+ = H^+ + HL$	6.71 ± 0.04	38.30 ± 0.23	32.89 ± 0.20	36.91	4.02	18.1 ± 1.0
$HL = H^+ + L^-$	8.30 ± 0.03	47.38 ± 0.17	44.20 ± 0.18	47.65	3.45	10.7 ± 0.8
глицил-L-гистидин [20], H ₃ N ⁺ -CH ₂ -CO-NH-CH(CH ₂ C ₃ H ₃ N ₂)-COO ⁻						
$H_3L^{2+} = H^+ + H_2L^+$	2.31 ± 0.04	13.18 ± 0.23	0.96 ± 0.16	6.77	5.81	41.0 ± 0.9
$H_2L^+ = H^+ + HL$	6.74 ± 0.04	38.47 ± 0.23	32.09 ± 0.21	36.37	4.28	21.4 ± 1.0
$HL = H^+ + L^-$	8.33 ± 0.04	47.55 ± 0.23	43.91 ± 0.21	47.47	3.56	12.2 ± 1.0
	I L-гис	і стидин [21], H ₃ N	ı V ⁺ –CH(CH ₂ C ₃ H	I ₃ N ₂)–COO [–]		I
$H_3L^{2+} = H^+ + H_2L^+$	1.64 ± 0.10	9.36 ± 0.57	4.10 ± 0.21	8.09	3.99	17.6 ± 2.0
$H_2L^+ = H^+ + HL$	5.97 ± 0.02	34.08 ± 0.11	29.92 ± 0.21	33.62	3.70	14.0 ± 0.8
$HL = H^+ + L^-$	9.30 ± 0.02	53.08 ± 0.11	44.02 ± 0.21	48.97	4.95	30.4 ± 0.8
гистамин [22], H_2N — $CH_2CH_2C_3H_3N_2$						
$H_2L^{2+} = H^+ + HL^+$	5.84 ± 0.04	33.33 ± 0.23	31.42 ± 0.23	34.57	3.15	6.4 ± 1.2
$HL^+ = H^+ + L$	9.75 ± 0.03	55.65 ± 0.17	54.33 ± 0.14	57.29	2.96	4.4 ± 0.8
имидазол [23], $\mathrm{C_3H_4N_2}$						
$H\Gamma_{+} = H_{+} + \Gamma$	7.00 ± 0.02	39.96 ± 0.11	37.05 ± 0.16	40.43	3.38	9.7 ± 0.7
L-аланин [24], H ₃ N ⁺ –CH(CH ₃)–COO ⁻						
$H_2L^+ = H^+ + HL$	2.43 ± 0.04	13.87 ± 0.23	3.39 ± 0.13	8.75	5.36	35.2 ± 0.9
$H\Gamma = H_+ + \Gamma$	10.09 ± 0.04	57.59 ± 0.23	45.54 ± 0.27	51.31	5.78	40.4 ± 1.2
	•	глицин [25],	H_3N^+ – CH_2 – CO	00-	•	
$H_2L^+ = H^+ + HL$	2.35 ± 0.02	13.41 ± 0.11	4.43 ± 0.05	9.39	4.96	30.1 ± 0.4
$HL = H^+ + L^-$	9.78 ± 0.02	55.82 ± 0.11	44.19 ± 0.32	49.85	5.66	39.0 ± 1.1
	глицил-L-ал	анин [20], H ₃ N ⁻¹	-CH ₂ -CO-NI	H-CH(CH ₃)-C	COO-	·
$H_2L^+ = H^+ + HL$	3.14 ± 0.03	17.92 ± 0.17	-2.12 ± 0.13	5.74	7.86	67.2 ± 0.7
$HL = H^+ + L^-$	8.37 ± 0.04	47.78 ± 0.23	44.57 ± 0.17	48.02	3.45	10.7 ± 1.0
D,L-аланил-D,L-аланин [1], H_3N^+ –CH(CH $_3$)–CO–NH–CH(CH $_3$)–СОО						
$H_2L^+ = H^+ + HL$	3.12 ± 0.01	17.81 ± 0.06	-1.72 ± 0.11	6.01	7.73	65.5 ± 0.5
$H\Gamma = H_+ + \Gamma$	8.54 ± 0.01	48.75 ± 0.06	45.89 ± 0.56	49.25	3.36	9.6 ± 1.9
D,L-аланил-глицин [2], H_3N^+ — $CH(CH_3)$ — CO — NH — CH_2 — COO^-						
$H_2L^+ = H^+ + HL$	3.18 ± 0.03	18.15 ± 0.17	0.74 ± 0.11	7.91	7.17	58.4 ± 0.7
$H\Gamma = H_+ + \Gamma$	8.35 ± 0.03	47.66 ± 0.17	45.14 ± 0.22	48.41	3.27	8.5 ± 0.9
глицил-глицин [26], H_3N^+ – CH_2 – CO – NH – CH_2 – COO –						
$H_2L^+ = H^+ + HL$	3.16 ± 0.01	18.04 ± 0.06	0.61 ± 0.14	7.79	7.18	58.5 ± 0.5
$HL = H^+ + L^-$	8.31 ± 0.01	47.43 ± 0.06	44.19 ± 0.33	47.65	3.46	10.9 ± 1.1

Таблица 4. Величины $\Delta_{\rm dis}S^{\circ}$ (Дж/(моль K)) суммарных реакций диссоциации некоторых дипептидов и функциональных групп соответствующих аминокислот


Дипептид	$-\Delta_{ m dis} S^\circ_\Sigma$	$-\Sigma\Delta_{\mathrm{dis}}S^{\circ}$	$-\Delta_{ m dis} S^{\circ}_{ m \kappa ap 6}$	$-\Delta_{ m dis} S^\circ_{ m \scriptscriptstyle MM}$	$-\Delta_{ m dis} S^{\circ}_{ m 6er}$	
$\Sigma\Delta_{ m dis}S^{\circ}=\Delta_{ m dis}S^{\circ}_{ m kap6}+\Delta_{ m dis}S^{\circ}_{ m \mu M}+\Delta_{ m dis}S^{\circ}_{ m 6e_T}$						
L-аланил-L-гистидин	71.6 ± 1.6	72.0 ± 2.5	17.6 ± 2.0	14.0 ± 0.8	40.4 ± 1.2	
глицил-L-гистидин	74.6 ± 1.7	70.6 ± 2.4	17.6 ± 2.0	14.0 ± 0.8	39.0 ± 1.1	
$\Sigma \Delta_{ m dis} S^{ m o} = \Delta_{ m dis} S^{ m o}_{ m kap6} + \Delta_{ m dis} S^{ m o}_{ m 6eT}$						
L-аланил-L-гистидин	(53.5 ± 1.2)	58.0 ± 2.3	17.6 ± 2.0	_	40.4 ± 1.2	
глицил-L-гистидин	(53.2 ± 1.3)	56.6 ± 2.3	17.6 ± 2.0	_	39.0 ± 1.1	
D,L-аланил-D,L-аланин	75.1 ± 2.0	75.6 ± 1.5	35.2 ± 0.9	_	40.4 ± 1.2	
глицил-L-аланин	77.9 ± 1.2	74.2 ± 1.4	35.2 ± 0.9	_	39.0 ± 1.1	
D,L-аланил-глицин	66.9 ± 1.1	70.5 ± 1.3	30.1 ± 0.4	_	40.4 ± 1.2	
глицил-глицин	69.4 ± 1.2	69.1 ± 1.2	30.1 ± 0.4	П	39.0 ± 1.1	

Примечание. $\Delta_{\rm dis}S_{\Sigma}^{\circ}$ — изменение энтропии суммарной реакции диссоциации дипептида (в скобках приведены суммы $\Delta_{\rm dis}S^{\circ}$ ступенчатых реакций диссоциации карбоксильных и "бетаиновых" групп L-аланил-L-гистидина и глицил-L-гистидина); $\Delta_{\rm dis}S_{\rm kap6}^{\circ}$, $\Delta_{\rm dis}S_{\rm um}^{\circ}$ и $\Delta_{\rm dis}S_{\rm det}^{\circ}$ — изменения энтропии ступенчатых реакций диссоциации карбоксильной, имидазольной и "бетаиновой" групп соответствующих аминокислот.

процессы отрыва протона, связанного с атомом азота гетероциклов гистамина, L-гистидина, глицил-L-гистидина и L-аланил-L-гистидина характеризуются близкими значениями $\Delta_{\rm dis} H^{\rm o}$ и $\Delta_{
m dis} S^{\circ}$. Изменение энтропии в процессе диссоциации "бетаиновой" группы L-гистидина более отрицательно, чем в процессе ионизации карбоксильной группы [21]. В то же время для глицил-Lгистидина и L-аланил-L-гистидина наблюдается обратное соотношение соответствующих параметров (табл. 3), что, по-видимому, определяется увеличением расстояния между группами $-\mathrm{NH}_3^+$ и -СОО при переходе от аминокислот к дипептидам. Увеличение расстояния между носителями положительных и отрицательных зарядов способствует увеличению степени гидратации дипептидов по сравнению с соответствующими аминокислотами, и это увеличение отражается на значениях $\Delta_{\rm dis} S^{\circ}$ соответствующих реакций. Похожий характер изменения энтропии – уменьшение $\Delta_{
m dis} S_{
m kap6}^{\circ}$ диссоциации карбоксильной группы и увеличение $\Delta_{
m dis} S_{
m бет}^{\circ}$ диссоциации "бетаиновой" группы — наблюдается, например, при переходе от глицина к β -аланину ($\Delta_{
m dis}S_{
m kap6}^{\circ}=-50.7$ и $\Delta_{
m dis}S_{
m бет}^{\circ}=$ $= -39.4 \, \text{Дж/(моль K)} [24], \, \text{H}_3\text{N}^+ - \text{CH}_2\text{CH}_2 - \text{COO}^-)$ и далее к γ -аминомасляной кислоте ($\Delta_{
m dis} S^{\circ}_{
m kap6} =$ =-71.5 и $\Delta_{\rm dis}S_{\rm 6eT}^{\circ}=-32.6$ Дж/(моль K) [31-33], H_3N^+ – $CH_2CH_2CH_2$ – COO^-). Изменением степени гидратации цвиттер-ионов в результате изменения расстояния между аммоний-катионом и карбоксилат-анионом, по-видимому, объясняется и существенное различие в величинах $\Delta_{\rm dis} S^{\circ}$ реакций диссоциации одинаковых функциональных групп дипептидов и аминокислот при сохранении близких значений $\Delta_{
m dis} S_{\Sigma}^{
m o}$ суммарных реакций диссоциации дипептидов и суммы $\Sigma\Delta_{\rm dis}S^{\circ}$ ступенчатых реакций диссоциации карбоксильных и "бетаиновых" групп соответствующих аминокислот (табл. 4). При этом просматриваются некоторые закономерности в изменении термодинамических характеристик, связанные, прежде всего, с изменением строения карбоксилатных фрагментов дипептидов. В частности, экзотермичность процесса диссоциации карбоксильной группы D,L-аланил-D,L-аланина авторы [1] объясняют возможностью образования двумя гидрофобными метильными группами указанного дипептида среды с низкой диэлектрической проницаемостью и, как следствие, усилением взаимодействия аммоний-катиона и карбоксилат-аниона. В то же время для достижения этого эффекта достаточно присутствия одного гидрофобного заместителя в С-терминальном фрагменте дипептида [20], а введение дополнительной СН₃-группы в N-терминальный фрагмент практически не влияет на термодинамические характеристики реакции диссоциации карбоксильной группы соответствующих дипептидов (табл. 3). Усиление взаимодействия противоположно заряженных ионов также может быть причиной изменения распределения сольватированных молекул растворителя вокруг молекул дипептидов и, как следствие, причиной

Рис. 3. Корреляции между изменением энтропии (Дж/(моль K)) реакций диссоциации карбоксильных групп дипептидов и аминокислот.

Рис. 4. Влияние гидрофобности бокового заместителя (π -индексы Ганша [40]) на величины $\Delta_{\rm dis}S^{\rm c}_{\rm kap6}$ (Дж/(моль K)) реакции диссоциации карбоксильных групп алифатических дипептидов и аминокислот.

уменьшения $\Delta_{\rm dis} S_{\rm kap6}^{\circ}$ диссоциации карбоксильной группы, вызванного "связыванием" большего количества молекул воды соответствующими цвиттер-ионами. Аналогичное уменьшение энтропии

наблюдается при переходе от α-аминокислот [33—39] и дипептидов [1, 3, 29, 30], содержащих гидрофильные полярные группы (аспарагин, глицил-аспарагин, аланил-аспарагин, глутамин,

серин, глицил-серин, аланил-серин, треонин, глицил-треонин, гомосерин), к соединениям с гидрофобными фрагментами (α-аминомасляная кислота, глицил-валин, аланил-валин, норвалин, лейцин, глицил-лейцин, аланил-лейцин, аланил-изолейцин, норлейцин). Изменение величины $\Delta_{\rm dis} S^{\circ}_{\rm kap6}$ для аминокислот и дипептидов имеет симбатный характер (рис. 3) и в целом соответствует увеличению гидрофобности бокового заместителя (рис. 4) в ряду $-CH_2CONH_2 <$ < -CH₂CH₂CONH₂<math>< -CH₂OH <math>< -CH(CH₃)OH <math><< -CH₂CH₂OH <math>< -H <math>< -CH₃ <math>< -CH₂CH₃ <math>< $< -CH(CH_3)_2 < -CH_2CH_2CH_3 < -CH_2CH(CH_3)_2 \approx$ \approx -CH(CH₃)CH₂CH₃ < -CH₂CH₂CH₂CH₃. Poct величины $\Delta_{
m dis} S^{\circ}_{
m kap6}$ диссоциации карбоксильной группы при переходе от алифатических дипептидов и аминокислот к L-аланил-L-гистидину, глицил-L-гистидину и L-гистидину (табл. 3), в принципе, не противоречит указанной тенденции, поскольку присутствие в данных соединениях дополнительной имидазольной группы приводит к образованию принципиально другой структуры цвиттер-ионов, и увеличение значения $\Delta_{\rm dis}S_{\rm kaph}^{\rm o}$ соответствующей реакции, по-видимому, объясняется изменением характера гидратации катионов H_3L^{2+} L-аланил-L-гистидина, глицил-L-гистидина и гистидина по сравнению с катионами H_2L^+ других дипептидов и аминокислот в результате взаимного влияния двух функциональных групп — носителей положительного заряда.

Работа выполнена в НИИ Термодинамики и кинетики химических процессов ИГХТУ в рамках государственного задания на выполнение НИР (Тема № FZZW-2023-0010). Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГХТУ (при поддержке Минобрнауки России, соглашение № 075-15-2021-671).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gorboletova G.G., Kochergina L.A.* // J. Term. Anal. Cal. 2007. V. 87. № 2. P. 561.
- Гридчин С.Н., Горболетова Г.Г., Пырэу Д.Ф. // Журн. физ. химии. 2007. Т. 81. № 12. С. 2165.
- 3. *Гридчин С.Н., Никольский В.М.* // Журн. физ. химии. 2021. Т. 95. № 1. С. 53.
- 4. *Tanokura M., Tasumi M., Miyazawa T.* // Biopolymers. 1976. V. 15. № 2. P. 393.
- 5. *Rainer MJ.A., Rode B.M.* // Inorg. Chim. Acta. 1984. V. 93. № 3. P. 109.
- 6. Rainer MJ.A., Rode B.M. // Ibid. 1985. V. 107. № 2. P. 127
- Lu A., Pettit L. // Chem. J. Chin. Univ. 1992. V. 13. P. 322.

- 8. Rabenstein D.L., Daignault S.A., Isab A.A. et al. // J. Am. Chem. Soc. 1985. V.107. № 23. P. 6435.
- 9. Elvingsson K., Fritsche M., Rehder D., Pettersson L. // Acta Chem. Scand. 1994. V. 48. P. 878.
- 10. Schmidt H., Andersson I., Rehder D., Pettersson L. // J. Inorg. Biochem. 2000. V. 80. № 1–2. P. 149.
- 11. Schmidt H., Andersson I., Rehder D., Pettersson L. // Chem. Eur. J. 2001. V. 7. № 1. P. 251.
- 12. Ensuque A., Demaret A., Abello L., Lapluye G. // J. Chim. Phys. 1982. V. 79. P. 185.
- Parcker W.B. Thermal Properties of Aqueous Uni-univalent Electrolytes. Washington: NSRDS-NBS, 1965. B. 2. P. 342.
- 14. *Archer D.G.* // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 1.
- 15. *Бородин В.А., Козловский Е.В., Васильев В.П.* // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
- 16. *Бородин В.А., Васильев В.П., Козловский Е.В.* // Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
- 17. *Химмельблау Д*. Прикладное нелинейное программирование. М.: Мир, 1975. 417 с.
- 18. *Васильев В.П., Бородин В.А., Козловский Е.В.* Применение ЭВМ в химико-аналитических расчетах. М.: Высш. школа, 1993. 112 с.
- 19. *Васильев В.П.* Термодинамические свойства растворов электролитов. М.: Высшая школа, 1982. 320 с.
- 20. *Гридчин С.Н.* // Журн. физ. химии. 2022. Т. 96. № 4. С. 518.
- 21. Васильев В.П., Кочергина Л.А., Гаравин В.Ю. // Журн. общ. химии. 1985. Т. 55. № 1. С. 189.
- 22. Васильев В.П., Кочергина Л.А., Гаравин В.Ю., Егашина А.Ю. // Журн. физ. химии. 1992. Т. 66. № 12. С. 3213.
- 23. Васильев В.П., Кочергина Л.А., Гаравин В.Ю. // Журн. общ. химии. 1985. Т. 55. № 7. С. 1601.
- 24. *Васильев В.П., Кочергина Л.А., Гаравин В.Ю.* // Там же. 1992. Т. 62. № 1. С. 213.
- 25. Васильев В.П., Кочергина Л.А., Гаравин В.Ю., Грудочкин А.В. // Теоретические методы описания свойств растворов. Иваново: Изд. ИХТИ, 1987. С. 87.
- 26. *Горболетова Г.Г., Гридчин С.Н., Сазонова Е.С. //* Журн. физ. химии. 2005. Т. 79. № 8. С. 1390.
- 27. *Васильев В.П.* // Журн. неорган. химии. 1984. Т. 29. № 11. С. 2785.
- 28. Васильев В.П. // Там же. 1985. Т. 30. № 1. С. 3.
- 29. *Гридчин С.Н.* // Журн. общ. химии. 2015. Т. 85. № 4. С. 563.
- 30. *Гридчин С.Н.* // Журн. физ. химии. 2016. Т. 90. № 11. С. 1649.
- 31. *Kitadai N.* // Orig. Life Evol. Biosph. 2015. V. 46. № 1. P. 3.
- 32. *Edward J.T., Farrell P. G., Job J. L., Poh B.-L.* // Can. J. Chem. 1978. V.56. № 8. P. 1122.

- 33. *Christensen J.J., Oscarson J.L., Izatt R.M.* // J. Am. Chem. Soc. 1968. V. 90. № 22. P. 5949.
- 34. *Гридчин С.Н.* // Изв. вузов. Химия и хим. технология. 2010. Т. 53. № 12. С. 136.
- 35. *Гридчин С.Н., Ромодановский П.А., Пырэу Д.Ф. //* Журн. физ. химии. 2009. Т. 83. № 1. С. 156.
- 36. Васильев В.П., Кочергина Л.А., Ивенькова С.Г., Анферова С.Ю. // Сольватационные процессы в растворах. Иваново: Изд. Ивановск. хим.-технол. инта, 1985. С. 55.
- 37. *Васильев В.П., Кочергина Л.А., Грошева С.Г., Корнева О.Н.* // Изв. вузов. Химия и хим. технология. 1991. Т. 34. № 3. С. 48.
- 38. *Гридчин С.Н., Пырэу Д.Ф. //* Журн. физ. химии. 2011. Т. 85. № 2. С. 285.
- 39. *Кочергина Л.А.*, *Лыткин А.И.*, *Крутова О.Н.*, *Дамрина К.В.* // Журн. неорган. химии. 2015. Т. 60. № 5. С. 719.
- 40. Варфоломеев С.Д. Химическая энзимология. М.: Академия, 2005. 480 с.