____ ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ ____ ГОРЕНИЯ И ВЗРЫВА

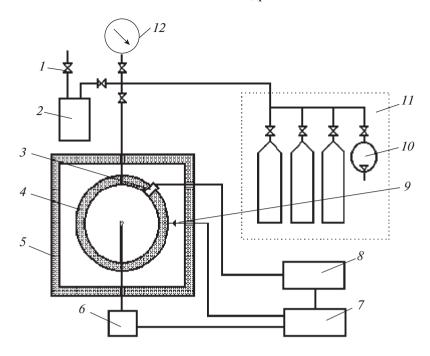
УЛК 614:841.12

ВЛИЯНИЕ СОСТОЯНИЯ ПОВЕРХНОСТИ РЕАКЦИОННОГО СОСУДА НА ХАРАКТЕРИСТИКИ ГОРЕНИЯ ГАЗОВЫХ СМЕСЕЙ, СОДЕРЖАЩИХ ГАЛОГЕНЗАМЕЩЕННЫЙ УГЛЕВОДОРОД

© 2023 г. С. Н. Копылов a,b,* , П. С. Копылов c , И. П. Елтышев c , И. Р. Бегишев c

 a Всероссийский научно-исследовательский институт противопожарной обороны, Балашиха, Россия b Национальный исследовательский ядерный университет "МИФИ", Москва, Россия c Академия государственной противопожарной службы, Москва, Россия

*e-mail: firetest@mail.ru
Поступила в редакцию 28.01.2023 г.
После доработки 28.01.2023 г.
Принята к публикации 22.02.2023 г.


Экспериментально исследовано влияние стенки реакционного сосуда на горение при атмосферном давлении газовых смесей, содержащих галогенированные углеводороды. Показано, что при загрязнении стенки продуктами горения поступление с нее в объем дополнительных количеств брома или йода снижает эффективность ингибирования бром- и йодсодержащих углеводородами горения водородовоздушных смесей (эффект сильнее выражен для йодированных веществ), ослабляет самочигибирование горения бромистого этила в смеси с воздухом, что приводит к расширению концентрационной области распространения пламени. На основании анализа известных кинетических данных экспериментально наблюдаемая картина объясняется уменьшением роли цикла регенерации HI при ингибировании йодированным углеводородом горения водорода в воздухе и снижением скорости реакции бромированных углеводородов с атомарным водородом при поступлении со стенки реакционного сосуда дополнительных количеств I_2 и Br_2 .

Ключевые слова: горение газов, промотирование, влияние стенки, пары йода, пары брома, галогенированные углеводороды

DOI: 10.31857/S0044453723080113, EDN: QVBFDF

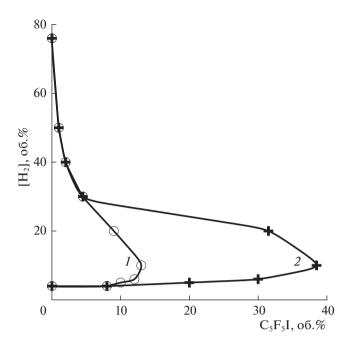
При оценке влияния различных факторов на характеристики горения при атмосферном давлении газовых смесей, содержащих галогенированные углеводороды, чаще всего рассматривается влияние размера и формы реакционного сосуда на концентрационные пределы распространения пламени (КПР) [1–3]. Исследования роли состояния поверхности реакционного сосуда в рассматриваемых процессах немногочисленны. При этом данный фактор может быть весьма значим. Так, в [4] при изучении горения бромистого этила в смеси с воздухом при атмосферном давлении в цилиндрическом сосуде объемом 10 дм³ (диаметр 25 см) было обнаружено, что при загрязнении стенок реакционного сосуда продуктами горения C_2H_5Br его верхний концентрационный предел распространения пламени возрастает более чем на 60%, с 7.9 до 13 об. %, а положение предела зависит от степени загрязнения стенок сосуда. Этот эффект объясняется авторами обогащением богатой горючей смеси сильным окислителем - бромом, выделяющимся с загрязненной продуктами горения поверхности реакционного сосуда.

В [5] минимальная концентрация $C_2F_4Br_2$, делающая невозможным горение смесей Н₂ с воздухом любого состава (минимальная флегматизирующая концентрация, МФК), указывается в виде интервала 14.4-15.6 об. %, при том, что это однозначно определяемый в конкретных условиях эксперимента параметр. К сожалению, автор [5] никак не объясняет этот результат. В работе [6] для горения смесей Н2-воздух получено аномально высокое значение МФК C_2F_5I (37.5 об. %) по сравнению с МФК C_2F_5C1 (28.0 об. %), что противоречит известным данным об ингибировании горения газов галогенированными углеводородами (эффективность ингибитора увеличивается в ряду $Cl \ll Br < I [7]$). Этот эффект объясняется в [6] более низкой скоростью избирательной диффузии атомов Н во фронт пламени бедной смеси H_2 -воздух в присутствии C_2F_5I . Можно предположить, что наблюдаемый результат является следствием тех же процессов, которые приводят к расширению области распространения пламени, описанному в [4].

Рис. 1. Схема экспериментальной установки "Вариант": I — кран, 2 — парогенератор, 3 — датчик давления, 4 — реакционный сосуд, 5 — термостат, 6 — устройство зажигания, 7 — контрольная панель, 8 — осциллограф, 9 — термопара, 10 — вакуумный насос, 11 — система ввода газов, 12 — вакуумметр.

Таким образом, наличие в молекуле галогензамещенного углеводорода атомов Вг или I обусловливает сложную экспериментальную картину при определении характеристик горения при атмосферном давлении газовых смесей, содержащих галогензамещенные углеводороды. Также нет общепринятого объяснения наблюдаемым явлениям. Настоящая работа посвящена продолжению исследований в данном направлении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

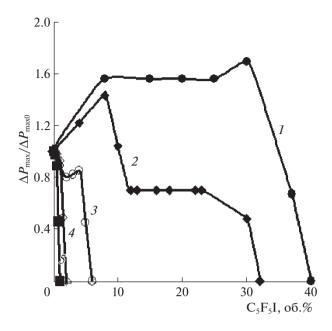

Исследовалось горение при атмосферном давлении и комнатной начальной температуре смесей H_2 —воздух—галогензамещенный углеводород из ряда C_2F_5H , C_2F_5Cl , C_2F_5I , $C_2F_4Br_2$, C_4F_{10} . Эксперименты проводились на установке "Вариант", схема которой представлена на рис. 1. Установка предназначена для измерения КПР, максимального давления взрыва $\Delta P_{\rm max}$ и максимального давления давления взрыва $(dP/dt)_{\rm max}$ в диапазоне давлений 0.1—4.0 МПа. Относительная погрешность определения КПР, $\Delta P_{\rm max}$ и $(dP/dt)_{\rm max}$ не превышала 10%.

Реакционный сосуд установки — сфера из нержавеющей стали диаметром 20 см (объем 4.2 л). Газовые смеси зажигались в центре реакционного сосуда при помощи искрового источника зажигания с энергией 2 Дж. Распространение пламени регистрировалось по показаниям датчика давления "Сапфир-22" с постоянной времени 3 ×

 \times 10⁻³ с, с записью на цифровом осциллографе. Принималось, что распространение пламени имеет место, если рост давления превышает 30 кПа.

Смеси требуемого состава создавались по парциальным давлениям непосредственно в предварительно вакуумированном до $0.5 \, \mathrm{k}\, \mathrm{\Pi}\mathrm{a}$ реакционном сосуде в следующем порядке: сначала в сосуд подавался галогензамещенный углеводород, затем водород, затем водород, затем воздух до давления, равного атмосферному. После этого $10 \, \mathrm{минут}$ отводилось на перемешивание смеси, а затем смесь зажигалась. В ходе эксперимента фиксировались ΔP_{max} и $(dP/dt)_{\mathrm{max}}$. По полученным данным определялось значение КПР. Для каждой концентрации водорода и галогенсодержащего соединения опыт повторялся трижды.

При определении КПР использовались две методики: в первой (далее — методика 1) при фиксированном содержании H_2 в смеси концентрация галогензамещенного углеводорода в ней уменьшалась до значений, при которых начинает распространяться пламя. Во второй (далее — методика 2) при фиксированном содержании H_2 концентрация галогензамещенного углеводорода в смеси увеличивалась от 0 до значения, при котором распространение пламени в смеси прекращается.


Рис. 2. Влияние состояния поверхности реакционного сосуда на область распространения пламени в смеси H_2 — C_2F_5I —воздух; I — на поверхности сосуда находятся продукты горения указанной смеси, 2 — чистая поверхность реакционного сосуда.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По методикам 1 и 2 для смеси H_2 с C_2F_5I и воздухом были получены области распространения пламени, ограниченные кривыми I и 2 на рис. 2.

Очевидно, что две описанные методики дают очень сильно различающиеся результаты: значения МФК, определенные для C_2F_5I по ним, различаются почти в 3 раза (13 и 37.5 об. % соответственно). Это происходит из-за того, что в первом случае поверхность реакционного сосуда при определении предела распространения пламени чистая, а во втором загрязнена продуктами горения, образовавшимися в предыдущих опытах: на свече зажигания и на поверхности сосуда обнаруживается большое количество кристаллов йода, сильно увеличивающееся от эксперимента к эксперименту. При извлечении свечи зажигания из сосуда видно, как с ее поверхности поднимается темно-фиолетовый пар.

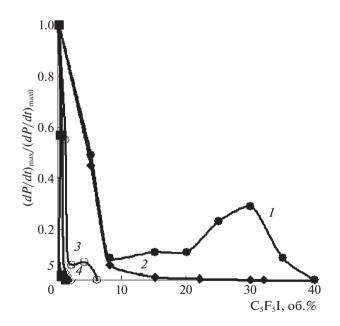

Состояние поверхности реакционного сосуда сказывается и на других характеристиках процесса горения. На рис. 3, 4 показано, как наличие на ней образовавшихся в предыдущих опытах продуктов горения влияет на изменение ΔP_{max} и $(dP/dt)_{\text{max}}$ для смесей H_2 с воздухом различного состава при добавлении C_2F_5I . Размерные нормировочные коэффициенты $\Delta P_{\text{max o}} = 290$, 460, 640, 610, 520 кПа, $(dP/dt)_{\text{max o}} = 3$, 6, 98, 155, 230,

Рис. 3. Зависимости максимального давления взрыва водородовоздушных смесей от концентрации C_2F_5I . Концентрация водорода в воздухе 10 (1), 20 (2), 30 (3), 40 (4), 50 об. % (5).

240 МПа/с при $[H_2]$ = 10, 20, 30, 40, 50 об. % соответственно.

Видно, что при использовании методики 2, пока количество I_2 на стенках реакционного сосу-

Рис. 4. Зависимости максимальной скорости нарастания давления взрыва водородовоздушных смесей от концентрации C_2F_5I . Концентрация водорода в воздухе 10 (1), 20 (2), 30 (3), 40 (4), 50 об. % (5).

Таблица 1. МФК различных ингибиторов горения смеси H_2 —воздух

Ингибитор	C ₂ F ₅ I		C ₂ F ₅ H		C ₂ F ₅ Cl		$C_2F_4Br_2$		C_4F_{10}	
Методика	1	2	1	2	1	2	1	2	1	2
МФК, об. %	13.0	37.5	16.5	16.5	27.5	27.5	12.0	16.0	17.0	17.0
Источник данных	с.д.	с.д.	с.д.	с.д.	с.д.	с.д., [6]	с.д.	с.д., [8, 9]	с.д.	с.д.

Обозначения: с.д. – собственные данные.

да невелико, значения $\Delta P_{\rm max}$ и $(dP/dt)_{\rm max}$ уменьшаются. К 3—4 опыту на стенках накапливается существенное количество I_2 , что для смесей с $[H_2]=30$ об. % и менее приводит к возрастанию $\Delta P_{\rm max}$ и $(dP/dt)_{\rm max}$ при увеличении содержания C_2F_5I .

Аналогичные исследования были выполнены при добавлении в водородовоздушную смесь других галогенированных углеводородов; проведено сравнение результатов с имеющимися в литературе данными (табл. 1), из которого следует, что различия в значениях МФК, определенных по методикам 1 и 2, нет для галогенсодержащих веществ, в молекулу которых входят атомы фтора и хлора. Для йодированных и бромированных соединений есть существенные различия (значительно более сильные в случае иодида). При горении смеси H_2 — C_2 F $_4$ Br $_2$ —воздух на поверхности реакционного сосуда также оседает большое количество продуктов горения, в частности, HBr и Br_2 .

Для объяснения полученных результатов можно предложить следующую трактовку. Известно [10], что высокая ингибирующая эффективность йодсодержащих углеводородов по отношению к горению водородсодержащих горючих определяется не столько актом первичного ингибирования по реакции вида

$$H + C_2F_5I = C_2F_5 + HI,$$
 (1)

сколько последующей реализацией цикла с участием HI:

$$H + HI = H_2 + I, \tag{2}$$

$$H + I + M = HI + M, \tag{3}$$

где M — любая третья частица. Как уже отмечалось, при проведении экспериментов после вакуумирования реакционного сосуда и задания в нем новой смеси H_2 — C_2F_5I —воздух, смесь выдерживалась в реакционном сосуде в течение 10 минут для перемешивания компонентов. При использовании методики 2 за это время с поверхности сосуда успевает испариться достаточно большое количество молекулярного йода (давление его насыщенных паров при температуре 293 K составляет

26.6 Па [11]). После зажигания смеси I_2 распадается на атомы по реакции

$$I_2 + M = I + I + M \tag{4}$$

вследствие небольшой энергии связи в молекуле I_2 (149.1 кДж [12]). Образовавшийся атомарный йод может участвовать в реакции

$$I + C_2 F_5 I = C_2 F_5 + I_2. (5)$$

Значимое влияние молекулярного йода на деструкцию йодсодержащих углеводородов хорошо известно. Впервые его промотирующая роль по отношению к распаду C_4H_9I показана в [12], причем, как следует из выполненного в [12] анализа, за промотирование ответственна последовательность реакций, аналогичных (4) и (5). Определяющая роль реакций типа (4) и (5) при пиролизе CH₃I, CF₃I, C₂F₅I и C₄F₉I при 500-700 К и атмосферном давлении установлена в [13, 14]. Учитывая значения энергии связи І-І и С-І в молекуле C_2F_5I (149.1 кДж [12] и 211.7 кДж [14] соответственно), можно ожидать, что при температурах 1000-1200 К, реализуемых при горении смеси водород-воздух, реакции (4) и (5) также окажутся существенными.

Однако, процесс (5), хотя и является конкурирующим по отношению к (1), не может привести к деактивации йодсодержащего ингибитора горения водорода, так как его скорость при температурах, реализующихся при горении, оказывается на несколько порядков меньше. Рассмотрим в качестве примера горение при начальном атмосферном давлении водородовоздушной смеси, содержащей 10 об. % Н2 и 4 об. % йодсодержащего ингибитора. Согласно [15], в пламени смеси 10 об. % водород -90 об. % воздух при температуре 1000 К мольная доля атомарного водорода равна 5×10^{-3} ; если смесь ингибирована 4 об. % CF₃I, мольная доля атомов йода в пламени при $T = 1000 \, \mathrm{K}$ составляет 8×10^{-5} [16]. По нашей оценке, выделение молекулярного йода со стенок реакционного сосуда максимально добавляет еще 5×10^{-3} к мольной доле атомов I. Поскольку для реакций (1) и (5) энергии активации равны $E_1 = 70.42$ кДж/ моль и $E_5 = 21.56 \text{ кДж/моль}, а значения предэкспонен$ циального множителя в выражении константы

скорости реакции составляют $k_1 = 10^{-11}$ см³ молек⁻¹ с⁻¹ и $k_5 = 1.66 \times 10^{-9}$ см³ молек⁻¹ с⁻¹ соответственно [14, 17], получаем для температуры 1000 К отношение их скоростей $w_5/w_1 \approx 1.7 \times 10^{-5}$.

Сравним теперь скорость регенерации HI в пламени (3) со скоростью процесса рекомбинашии атомов йода

ответственного за образование молекулярного

$$I + I + M = I_2 + M,$$
 (6)

йода в реагирующей системе, который по завершении горения смеси Н2-воздух с добавкой ингибитора оседает на стенках реакционного сосуда. Используя для оценки кинетические параметры реакции (3) из работы [18] ($E_3 = 0$ кДж/моль, $k_3=1.3 imes 10^{-31} \Bigl({T \over 298} \Bigr)^{-1.87}$ см 6 молек $^{-2}$ с $^{-1}$, где T- температура), а параметры реакции (6) — согласно [19] ($E_6 = 0$ кДж/моль, $k_3 = 9.93 \times 10^{-30} \left(\frac{T}{298}\right)^{-5}$ см⁶ молек $^{-2}$ с $^{-1}$), получаем, что при наличии I_2 на стенках реакционного сосуда перед проведением опыта скорости процессов (3) и (6) при температуре 1000 К для случая горения смеси Н2-воздух- C_2F_4I , содержащей 10 об. % H_2 и 4 об. % ингибитора, соотносятся как $w_3/w_6 \approx 0.57$. Таким образом, реакция (6) оказывается способна эффективно конкурировать с процессом (3), разрушая образуемый реакциями (2), (3), цикл регенерации НІ в пламени и тем самым значительно уменьшая

реакция (3) доминирует по отношению к (6), и последняя не оказывает заметного влияния на цикл регенерации HI, что подтверждается данными [16]: I_2 в высокотемпературной зоне пламени не обнаруживается вплоть до приближения процесса горения к завершению, то есть когда концентрация атомарного водорода становится очень малой. В [16] также отмечается, что роль реакции (6) незначима только ввиду малости концентрации атомов I.

эффективность ингибирования горения водорода

в воздухе йодсодержащим веществом. Если же стенки реакционного сосуда перед проведением

эксперимента чистые, для той же горючей смеси

при той же температуре 1000 К $w_3/w_6 \approx 36.2$, т.е.

Бромсодержащие ингибиторы воздействуют на горение водородсодержащих веществ по схеме, аналогичной (1)—(3). В отличие от ситуации с воздействием на процесс горения дополнительного количества I_2 , эффект влияния загрязненной бромсодержащими продуктами стенки реакционного сосуда на КПР водородовоздушных

смесей в присутствии тетрафтордибромэтана объясняется последовательностью реакций

$$Br_2 + M = Br + Br + M, (7)$$

$$Br + C_2F_4Br_2 = C_2F_4Br + Br_2,$$
 (8)

последняя из которых способна конкурировать с процессом

$$H + C_2F_4Br_2 = C_2F_4Br + HBr,$$
 (9)

тем самым снижая эффективность ингибирования тетрафтордибромэтаном горения водорода в воздухе. Поскольку для реакции (8) кинетические параметры неизвестны, воспользуемся для оценки сведениями по аналогичной реакции $\mathrm{CF_3Br}$ [20] ($E_8=24.3~\mathrm{кДж/моль},\,k_8=1.07\times10^{-10}~\mathrm{cm^3}$ молек $^{-1}~\mathrm{c}^{-1}$). Согласно [21], для реакции (9) $E_9=22.37~\mathrm{кДж/моль},\,k_8=1.49\times10^{-11}~\mathrm{cm^3}$ молек $^{-1}~\mathrm{c}^{-1}$. Тогда при $T=1000~\mathrm{K}$ скорости реакций (8) и (9)

соотносятся как $w_8/w_9 = 57.81\frac{[\mathrm{Br}]}{[\mathrm{H}]}$. Так как мольная доля атомов Br в пламени смеси 10 об. % $\mathrm{H_2}-90$ об. % воздух, ингибированной 4 об. % $\mathrm{CF_3Br}$, при T=1000 K составляет 6×10^{-4} [16], с учетом данных [15] по концентрации атомов H и предполагая, что со стенок реакционного сосуда выделяется не меньше $\mathrm{Br_2}$, чем $\mathrm{I_2}$ при использовании йодсодержащего ингибитора, получаем, что $w_9/w_9\approx64.7$.

Используя кинетические данные [19], легко можно показать также, что выделение со стенки в реагирующую систему дополнительных количеств брома слабо влияет на соотношение скоростей реакций

$$H + Br + M = HBr + M, (10)$$

$$Br + Br + M = Br_2 + M, \tag{11}$$

для тех же условий, при которых проводилось сравнение скоростей процессов (8) и (9) получаем при $T=1000~{\rm K}$, что при отсутствии дополнительного количества брома в реагирующей системе $w_{10}/w_{11}\approx 1.0$, а при его наличии $w_{10}/w_{11}\approx 0.89$.

Таким образом, испаряющийся со стенок реакционного сосуда молекулярный бром, уменьшая эффективность ингибирования при помощи $C_2F_4Br_2$, не оказывает заметного влияния на существенно более значимый с точки зрения подавления процесса горения цикл с участием HBr. В результате эффект влияния стенки выражен значительно слабее, чем в случае йодистого ингибитора.

Аналогичным образом можно объяснить и явление расширения верхнего концентрационного предела распространения пламени бромистого этила в воздухе, обнаруженное в работе [4] в случае, когда стенки реакционного сосуда загрязнены продуктами горения C_2H_5 Br. Выделяющийся

по реакции (7) атомарный бром взаимодействует с C_2H_5Br :

$$Br + C_2H_5Br = C_2H_5 + Br_2 + 61.3 \text{ кДж},$$
 (12)

уменьшая тем самым возможности для осуществления акта самоингибирования горения бромистого этила

$$H + C_2H_5Br = C_2H_5 + HBr - 84 кДж.$$
 (13)

Так как для реакции (12) $E_{12}=24.3$ кДж/моль, $k_{12}=1.07\times 10^{-10}$ см³ молек $^{-1}$ с $^{-1}$ [20], а для процесса (13) $E_{13}=22.37$ кДж/моль, $k_8=1.49\times 10^{-11}$ см³ молек $^{-1}$ с $^{-1}$ [22], при температуре T=1000 К скорости реакций (12) и (13) соотносятся как $w_{12}/w_{13}=0.12\frac{[\mathrm{Br}]}{[\mathrm{H}]}$. Мольная доля атомов водорода в пламени смеси бромистого этила с воздухом неизвестна, но, согласно [23], для богатых околопредельных смесей этана или пропана с воздухом она не превышает 2×10^{-4} . Предполагая, что со стенок реакционного сосуда выделяется не мень-

ше Вг2, чем молекулярного йода в описанном вы-

ше случае использования йодсодержащего инги-

битора, получаем, что $w_{12}/w_{13} \approx 0.37$.

Таким образом, экспериментальные результаты, полученные в данной работе и известные из других источников, показывают значительное промотирующее влияние поверхности реакционного сосуда, загрязненной бромом или йодом, на горение газовых смесей, содержащих бром- или йодзамещенные углеводороды. При наличии Вг2 или I_2 на поверхности реакционного сосуда наблюдается снижение ингибирующей эффективности бром- и йодсодержащих веществ по отношению к горению смесей Н₂-воздух, а также ослабление самоингибирования горения С, Н, Вг в смеси с воздухом, приводящее к расширению КПР. Эффект промотирования сильнее для йодированных веществ. Согласно выполненному анализу известных кинетических данных, экспериментально наблюдаемая картина объясняется уменьшением роли цикла регенерации НІ при ингибировании йодированным углеводородом горения водорода в воздухе при наличии поступающих со стенки реакционного сосуда дополнительных количеств І2; испарившийся со стенки Вг₂, обеспечивая появление в реагирующей системе дополнительного атомарного брома, снижает скорость реакций бромированных углеводородов с атомами Н, уменьшая эффективность подавления ими горения смеси Н₂-воздух, а также сокращая возможности реализации акта самоингибирования при горении C_2H_5 Br в воздухе.

Работа проводилась при поддержке Фонда содействия инновациям и по программе "УМНИК" по договорам № 17482 ГУ/2022 от 26 апреля 2022 г. и № 16371 ГУ/2021 от 25 мая 2021 г.

СПИСОК ЛИТЕРАТУРЫ

- Баратов А.Н. Горение Пожар Взрыв Безопасность. М.: ФГУ ВНИИПО МЧС России, 2003. 364 с.
- 2. Копылов П.С., Елтышев И.П. // Актуальные проблемы пожарной безопасности: тез. докл. XXX Междунар. науч.-практ. конф. М: ВНИИПО. 2018. С. 415.
- 3. *Копылов С.Н.* Пожаровзрывобезопасность. М.: НИЯУ МИФИ. 2015. 102 с.
- 4. *Макеев В.И., Голиневич Г.Е., Глухов И.С.* // Пожарная профилактика. М.: ВНИИПО, 1977. С. 24.
- Dixon-Lewis G. // Proceedings of Royal Society (London). 1996. A452. P. 1857.
- 6. Shebeko Yu.N., Azatyan V.V., Bolodyan I.A. et al. // Combustion and Flame. 2000. V. 121. P. 542.
- 7. *Денисов Е.Т., Азатян В.В.* Ингибирование цепных реакций. М.: Изд-е РАН. 1997. 288 с.
- 8. *Баратов А.Н.* // сб. Проблемы горения и тушения. М.: ВНИИПО, 1968. С. 32.
- 9. *Азатян В.В., Айвазян Р.Г., Калачев В.И. и др. //* Хим. физика. 1998. Т. 17. № 2. С. 117
- Kopylov S.N., Kopylov P.S., Yeltyshev I.P. et al. // IOP Conference Series: Earth Environmental Science. 2021. V. 666. P. 022011.
- 11. *Киреев С.В., Шнырев С.Л.* Современные методы оптической спектроскопии технологических сред. М.: Изд-во Юрайт, 2019. 147 с.
- 12. Семенов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. М.: Изд-во АН СССР, 1958. 354 с.
- 13. *Васильева Н.А., Кочубей Д.И., Буянов Р.А. и др. //* Кинетика и катализ. 1982. Т. 23. С. 486.
- 14. *Скоробогатов Г.А., Дымов Б.П., Хрипун В.К.* // Там же. 1991. Т. 32. С. 252.
- Shvartzberg V.M., Bolshova T.A., Korobeinichev O.P. // Energy Fuels. 2010. V. 24. P. 1552.
- McIlroy A. // Proceedings of Halons Technical Options Working Conference. Albuquerque: University of New Mexico, 1996. P. 247.
- 17. Varga T., Zsely I.G., Turanyi T. et al. // Intern. J. on Chemical Kinetics. 2014. V. 46. P. 295.
- Лифшиц А., Тамбуру С., Дубникова Ф. // Журн. физ. химии. 2008. Т. 112. С. 925.
- Baulch D.L., Duxbury J., Grant S.J. et al. // J. Phys. Chem. Ref. Data. 1981. V. 10. P. 1.
- 20. Кондратьев В.Н. Константы скорости газофазных реакций. М.: Наука, 1970. 351 с.
- 21. *Петрова Л.Д., Азатян В.В., Баратов А.Н. и др. //* Изв. АН СССР, сер. хим. 1976. Т. 25. С. 879.
- 22. Armstrong N., Simmons R.F. // Proceedings of International Symposium on Combustion. 1973. 14. P. 443.
- 23. *Peters N., Rogg B.* Reduced Kinetic Mechanisms for Applications in Combustion Systems. Berlin: Springer, 1993. 360 p.