____ ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ ____ ГОРЕНИЯ И ВЗРЫВА

УЛК 541.127+543.98

ИЗУЧЕНИЕ ПРИРОДЫ ВСПЫШЕК СВЕТОИЗЛУЧЕНИЯ ПРОЦЕССА ВЗРЫВНОГО ОКИСЛЕНИЯ ВОДОРОДА В ПРИСУТСТВИИ SO₂

© 2023 г. Э. М. Макарян^{а,*}, П. С. Гукасян^а, А. А. Арутюнян^а

^аИнститут химической физики им. А.Б. Налбандяна НАН РА 0014, Ереван, Армения *e-mail: makaryan@mail.ru

Поступила в редакцию 27.12.2022 г. После доработки 27.12.2022 г. Принята к публикации 27.02.2023 г.

Реакция окисления водорода в присутствии сернистого газа в области самовоспламенения ($T=470-510^{\circ}$ С и P < 200 Торр) сопровождается образованием элементарной серы, которая протекает во взрывном режиме. В работе расчетно-кинетическим методом с помощью программы SENKIN: СНЕМКІN II, на математической модели, описывающей процесс окисления водорода в присутствии сернистого газа, проанализированы наблюдаемые вспышки светового излучения взрывного процесса. Выявлены характеристики процесса окисления водорода в присутствии сернистого газа в области низкотемпературного цепного взрыва.

Ключевые слова: сернистый ангидрид, сера, вспышки светоизлучения

DOI: 10.31857/S0044453723080150, EDN: QVRGIN

Влияние сернистого газа на процессы горения очень актуально. Этому вопросу посвящено большое количество работ [1, 2]. В зависимости от условий протекания процесса, сернистый газ может оказывать как ускоряющее, так и замедляющее влияние на процессы горения водорода [3-5]. В настоящей работе процесс окисления водорода в присутствии сернистого газа изучали в режиме "прерывистых пламен" [6]. Специально разработанная методика позволяла регистрировать светоизлучения и анализировать данные по интенсивности, частоте и динамике вспышек, которыми сопровождалось химическое превращение во взрывном режиме, и эти данные сопоставляли с результатами, полученными расчетным путем.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты проводили на вакуумно-проточной установке в реакторе, изготовленном из кварцевого стекла, объемом $1120~{\rm cm}^3~(d=80~{\rm mm}, l=230~{\rm mm})$. Смесь реагирующих газов готовили в стеклянных баллонах, присоединенных к коллектору, откуда она под нужным давлением подавалась в реактор. Скорость газового потока и давление регулировали с помощью вентилей, установленных на входе и выходе реактора. Давление в реакторе измеряли ртутным манометром. Реактор подогревался терморегулируемой электропечью специальной конструкции. В боковой стенке

и на торце печи имелись смотровое окно для визуальных наблюдений и окуляр для регистрации вспышек светочувствительным приемником. Интенсивность и частота вспышек регистрировались преобразователем и цифровым многоканальным самописцем "S-Recorder-2", подсоединенным к компьютеру, что позволяло проводить визуальные наблюдения и регистрацию.

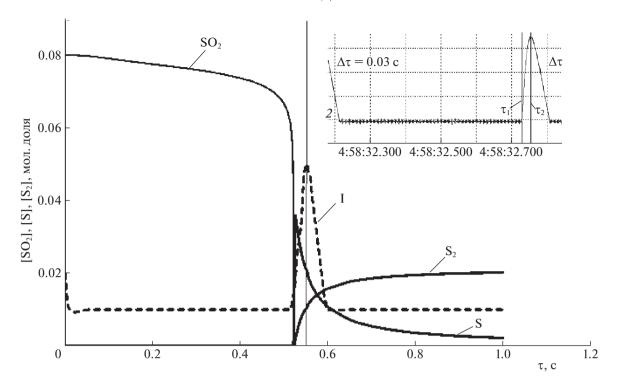
Опыты проводили со смесью богатой водородом с добавкой сернистого газа: $H_2: O_2: SO_2: N_2 = 10:1:1:0.5$, при $T=470^{\circ}$ С и P=40 Торр. Анализ влияния SO_2 на процесс окислительного превращения водорода проводился численно-кинетическим методом с помощью программы SENKIN:CHEMKIN II [7] для условий (давление, температура, состав газовой смеси), при которых наблюдался взрывной процесс.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Изучение и анализ влияния сернистого газа на процесс окислительного превращения водорода проводили с использованием программы SEN-KIN:CHEMKIN II на модели с участием радикалов при условиях, где наблюдался взрывной процесс. Элементарные реакции рассматриваемого процесса окислительного превращения водорода в присутствии SO_2 , включающие предполагаемые реакции зарождения, продолжения и гибели цепей представлены в табл. 1.

Таблица 1. Набор основных элементарных реакций, характеризующих окислительное превращение водорода с добавками диоксида серы

№	Реакции	$K = AT^n \exp(-E/RT)$			Лутовотуво
		А, моль-см-с-К	n	E, кал/моль	Литература
1	$H_2 + O_2 \rightarrow 2OH$	7.95×10^{14}	0.0	44950.0	[8]
2	$OH + H_2 \rightarrow H_2O + H$	2.20×10^{13}	0.0	5140.0	[9]
3	$H + O_2 \rightarrow OH + O$	9.75×10^{13}	0.0	14850.0	[10]
4	$O + H_2 \rightarrow OH + H$	4.78×10^4	2.67	6290.0	[11]
5	$H + O_2 + M \rightarrow HO_2 + M$	1.10×10^{15}	0.0	0.0	[12]
6	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	2.00×10^{12}	0.0	0.0	[13]
7	$H_2O_2 \rightarrow OH + OH$	3.00×10^{14}	0.0	50700.0	[11]
8	$H_2O_2 + M \rightarrow OH + OH + M$	1.21×10^{17}	0.0	47 500.0	[11]
9	$H + SO_2 \rightarrow SO + OH$	1.35×10^{22}	-2.30	30965.0	[14]
10	$H + SO_2 \rightarrow HSO_2$	5.31×10^{8}	1.59	2470.0	[14]
11	$H + SO_2 \rightarrow HOSO$	2.33×10^{8}	1.63	7300.0	[14]
12	$HSO_2 + M \rightarrow SO + OH + M$	3.01×10^{22}	0.0	0.0	[15]
13	$HOSO \rightarrow OH + SO$	1.66×10^{16}	-0.32	67724.0	[16]
14	$SO + SO \rightarrow S + SO_2$	1.21×10^{11}	0.0	0.0	[17]
15	$SO + O \rightarrow S + O_2$	2.05×10^{13}	0.0	14 150.0	[18]
16	$SO + O + M \rightarrow SO_2 + M$	1.81×10^{17}	0.0	0.0	[19]
17	$S + O_2 \rightarrow SO + O$	5.18×10^4	2.4	-1907.0	[20]
18	$SO + O_2 \rightarrow SO_2 + O$	9.63×10^{10}	0.0	4531.0	[21]
19	$S + SO_2 \rightarrow SO + SO$	5.88×10^{12}	0.0	9034.0	[22]
20	$S + S + M \rightarrow S_2 + M$	7.18×10^{14}	0.0	-407.0	[23]
21	$SO_2 + O \rightarrow SO + O_2$	5.00×10^{12}	0.0	19460.0	[19]
22	$H + HSO_2 \rightarrow H_2 + SO_2$	1.57×10^{12}	0.0	0.0	[24]
23	$OH + HSO_2 \rightarrow H_2O + SO_2$	4.58×10^{12}	0.0	0.0	[24]
24	$SO_2 + O + M \rightarrow SO_3 + M$	1.80×10^{15}	0.0	0.0	[25]
25	$SO_2 + O \rightarrow SO_3$	3.68×10^{11}	0.0	1700	[26]
26	$HO_2 + SO_2 \rightarrow SO_3 + OH$	5.36×10^{8}	0.0	0.0	[27]
27	$H \rightarrow 0.5H_2$	7.94×10^4	0.0	0.0	
28	$OH \rightarrow 0.5H_2 + 0.5O_2$	7.94×10^4	0.0	0.0	
29	$O \rightarrow 0.5O_2$	7.94×10^4	0.0	0.0	
30	$SO_3 + SO \rightarrow 2SO_2$	1.20×10^{7}	0.0	0.0	[28]


Таким образом, для модели окисления водорода в присутствии SO_2 , представленной в таблице, при соотношении газовой смеси $H_2:O_2:SO_2:N_2=10:1:1:0.5$, $T=470^{\circ}\mathrm{C}$ и P=40 Торр наблюдался взрывной процесс. Зависимость изменения мольной доли SO_2 в реакционной среде и некоторых продуктов реакции от времени представлена на рис. 1. На рис. 1 пунктирной кривой также показано изменение интенсивности светоизлучения в период взрывного процесса.

Визуальные наблюдения через торец реактора и регистрация светоизлучения также указывают

на взрывной характер процесса окисления водорода в присутствии SO_2 .

На рис. 2 представлена зависимость интенсивности светоизлучения от времени при наблюдаемом взрывном процессе.

Как видно из рис. 1 период индукции процесса окисления водорода в присутствии сернистого газа и временной интервал между двумя соседними вспышками совпадают. Длительность взрывного процесса очень мала, что не позволяет проанализировать кинетику и химизм процесса, так как изменения происходят за очень короткое время относительно масштаба оси времени. Для то-

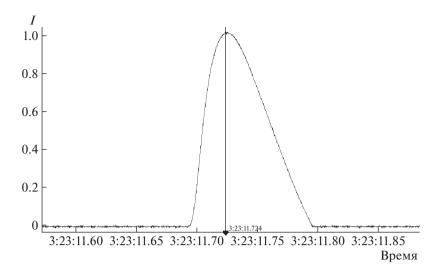
Рис. 1. Зависимости изменения мольной доли SO_2 в реакционной среде и некоторых продуктов реакции окисления водорода в присутствии сернистого газа от времени, I — кривая изменения интенсивности светоизлучения. В правом верхнем углу представлена запись светоизлучения, полученная с помощью цифрового многоканального самописца "S-Recorder-2".

го, чтобы раскрыть временной интервал взрыва и проанализировать процесс, расчеты необходимо выполнить, применив начальные условия, соответствующие условиям времени начала взрывного процесса (давление, температура, состав газовой смеси).

Эти начальные условия представлены ниже:

$$\begin{array}{lll} f(c) = 5.2048E-01 & P(atm) = 7.6337E-02 & T(K) = 1.1393E+03 \\ H_2 = 7.8806E-01 & O_2 = 5.3604E-02 & SO_2 = 4.9504E-02 \\ O = 5.0904E-04 & OH = 5.0304E-06 & SO = 4.3803E-03 \\ H = 1.3201E-05 & HSO_2 = 2.7902E-16 & HOSO = 1.3001E-03 \\ S = 1.6401E-05 & H_2O_2 = 7.8606E-11 & HO_2 = 1.6401E-06 \\ S_2 = 9.1707E-11 & SO_3 = 2.7202E-02 & H_2O = 3.4203E-02 \\ N_2 = 4.1203E-02 & \end{array}$$

Применив начальные условия, соответствующие времени $t=5.2048\mathrm{E}{-01}$ с — начала взрыва, были получены кинетические данные по продуктам реакции окисления водорода в присутствии сернистого газа в период взрывного процесса, и на рис. 3 представлены данные для S и S_2 .


Как видно из рис. 3, момент максимального значения интенсивности светоизлучения совпадает по времени со временем, когда наблюдаются

максимальная скорость расхода атомарной серы и максимальная скорость образования молекулярной серы — S_2

Более подробный анализ показал, что во время взрыва светоизлучение возникает в результате взаимодействия SO с атомарным кислородом, которое инициирует образование элементарной серы с последующей ее димеризацией и образованием возбужденной молекулярной серы S₂. Это время совпадает со временем светоизлучения и подтверждается тем фактом, что реакция образования молекулярной серы протекает с большим тепловым эффектом $\Delta H_{673} = -215\,000$ Дж/моль, и реакция имеет отрицательное значение ΔG_{673} = =-170000 Дж/моль. Таким образом, можно с большой вероятностью предполагать, что световые вспышки возникают в результате физического процесса перехода возбужденной молекулярной серы \$\frac{8}{2}\$ в нормальное состояние:

$$SO \rightarrow S \rightarrow 0.5S_2^* \rightarrow 0.5S_2 + hv.$$

В первом приближении энергию фотона hv можно принять равным изменению энтальпии реакции ΔH_{673} в пересчете на один атом элементарной серы. Исходя из этого предположения, расчетное значение частоты фотона $v=5.38\mathrm{E}{-}14~\mathrm{c}^{-1}$, а длина волны излучаемого света $\lambda=560~\mathrm{hm}$, и эти зна-

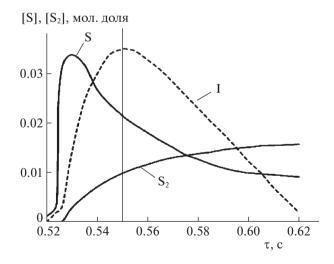


Рис. 2. Зависимость интенсивности светоизлучения от времени. Продолжительность светоизлучения приблизительно равна 0.08-0.10 с.

чения соответствуют, наблюдаемому в эксперименте, желтоватому свечению.

Таким образом, экспериментальные данные и проведенный анализ выявили основные элементарные реакции, которые ответственны за возникновение светового излучения в процессе окисления водорода в присутствии сернистого газа. Световые вспышки возникают в результате релаксации возбужденной молекулы S₂*.

Предложенная методика для раскрытия временного интервала процесса, при использовании программы SENKIN: CHEMKIN II, может с успехом быть использована также для других

Рис. 3. Зависимости концентрации, некоторых продуктов реакции окисления водорода в присутствии сернистого газа, от времени; I — изменение интенсивности светоизлучения.

взрывных процессов, протекающих с большой скоростью в малые промежутки времени.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rasmusen G.L., Glarborg P., Marshall P. // Proc. Combustion Institute. 2007. V. 31. P. 339.
- Gimenez-Lopez J., Martinez M., Millera A., Bilbao R., Alzueta M.U. // Combustion and Flame. 2011. V. 158.
- 3. *Kallend A.S.* // Combustion and Flame. 1972. V. 19. № 2. P. 227.
- 4. *Durie R.A., Smith M.Y., Johnson G.M.* // Combustion and Flame. 1971. V. 17. № 2. P. 197.
- 5. *Мкрян Т.Г., Гукасян П.С., Манташян А.А.* // Хим. физика. 2002. Т. 21. № 11. С. 33.
- 6. *Манташян А.А.* // Физика горения и взрыва. 2016. Т. 52. № 2. С. 3.
- Lutz A.E., Kee R.J., Miller J.A. SENKIN: A FOR-TRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis // Sandia National Laboratory Rep. SAND-87-8248. Available at http://www.osti.gov/scitech/biblio/5371815.
- 8. Semenov N. // Acta Physicochim. U.R.S.S. 1945. V. 20. P. 291.
- 9. Baulch D.L., Drysdale D.D., Horne D.G. // Symp. Int. Combust. Proc. 1973. V. 14. P. 107.
- Baulch D.L., Cobos C.J., Cox R.A. et al. // J. Phys. Chem. Ref. Data. 1994. V. 23. P. 847.
- 11. *Baulch D.L.*, *Cobos C.J.*, *Cox R.A. et al.* // J. Phys. Chem. Ref. Data. 1992. V. 21. P. 411.
- 12. *Pirraglia A.N., Michael J.-V., Sutherland J.W., Klemm R.B.* // J. Phys. Chem. 1989. V. 93. P. 282.
- 13. *Warnatz J.* Rate coefficients in the C/H/O system / Combustion Chemistry, ed. *W.C. Gardiner, Jr.*, pub. Springer-Verlag.
- 14. *Blitz M.A.*, *Hughes K.J.*, *Pilling M.J.*, *Robertson S.H.* // J. Phys. Chem. A. 2006. V. 110. P. 2996.

- 15. *Stickel R.E., Chin M., Daykin E.P. et al.* // J. Phys. Chem. 1993. V. 97. P. 13653.
- Goumri A., Rocha J.-D. R., Laakso D. et al. // J. Phys. Chem. A. 1999. V. 103. P. 11328.
- Schofield K. // J. Phys. Chem. Ref. Data. 1973. V. 2. P. 25.
- 18. Lu C.W., Wu Y.J., Lee Y.P. et al. // J. Phys. Chem. A. 2003. V. 107. P. 11020–11029.
- Singleton D.L., Cvetanovic R.J. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 1377.
- Lu C.W., Wu Y.J., Lee Y.P. et al. // J. Chem. Phys. 2004.
 V. 121. P. 8271.
- 21. Atkinson R., Baulch D.L., Cox R.A. et al. // Atmos. Chem. Phys. 2004. V. 4. P. 1461.

- 22. Murakami Y., Onishi S., Kobayashi T. et al. // J. Phys. Chem. A. 2003. V. 107. P. 10996.
- 23. Du S.Y., Francisco J.S., Shepler B.C., Peterson K.A. // J. Chem. Phys. 2008. V. 128.
- 24. *Durie R.A.*, *Smith M.Y.*, *Johnson G.M.* // Combustion and Flame. 1971. V. 17. № 2. P. 197.
- Yilmaz A., Hindiyarti L., Jensen A.D. et al. // J. Phys. Chem. A. 2006. V. 110. P. 6654.
- Naidoo J., Goumri A., Marsha P.A. // Proc. Combust. Inst. 2005, V. 30, P. 1219–1225
- Payne W.A., Stief L.J., Davis D.D. // J. Am. Chem. Soc. 1973. V. 95. P. 761.
- 28. Chung K., Calvert J.G., Bottenheim J.W. // Int. J. Chem. Kinet. 1975. V. 7. P. 161.