——— ЭЛЕКТРОХИМИЯ. ГЕНЕРАЦИЯ И АККУМУЛИРОВАНИЕ ——— ЭНЕРГИИ ИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ

УДК 536.4

ЯВЛЕНИЯ ПЕРЕНОСА В СИСТЕМАХ ЩЕЛОЧНЫХ МЕТАЛЛОВ

© 2024 г. Д. К. Белащенко

Университет науки и технологий «МИСиС», Москва, Россия

e-mail: dkbel75@gmail.com

Поступила в редакцию 18.08.2023 После доработки 18.08.2023 Принята к публикации 15.09.2023

С помощью уравнений, связывающих явления проводимости и электромиграции, проанализированы и уточнены данные для двойных систем жидких щелочных металлов K—Na, Na—Cs, Cs—K, Hg—Na и Hg—K. Получена хорошая сшиваемость данных для треугольника Hg—Na—K. Для треугольника Na—K—Cs сшиваемость менее точна из—за повышенной ошибки эксперимента в системах с точкой инверсии в средней области концентраций. Рассчитаны факторы g и b 18 жидких металлов. Только у Cs и K фактор b превышает значение b=1, принятое в теориях Друде—Зоммерфельда.

Ключевые слова: проводимость, электромиграция, двойные системы жидких щелочных металлов.

DOI: 10.31857/S0044453724040156, **EDN:** QEMMTS

ВВЕДЕНИЕ

Явление электропереноса в жидких металлических сплавах интенсивно исследовали во второй половине прошлого века, однако к настоящему времени интерес сместился в сторону твердых растворов в связи с важной ролью электромиграции в процессах деградации больших интегральных схем. В этих устройствах развиваются электрические поля с высокой напряженностью, что приводит к нежелательной миграции примесей. В практическом плане электромиграция в жидких металлах может быть применена для глубокой очистки от примесей, однако широкого распространения не получила из-за больших расходов электроэнергии и технологических сложностей.

В отношении механизма явления наиболее близко к электромиграции находится проводимость в жидких металлах. Классическое уравнение Друде—Зоммерфельда для проводимости имеет вид:

$$\rho = \frac{mv_{\rm F}}{e^2nL}.\tag{1}$$

Здесь ρ — электросопротивление, m и $v_{\rm F}$ — масса и скорость ферми-электронов, e — элементарный заряд, n — число электронов проводимости в единице объема, L — длина свободного пробега. В обоих явлениях важную роль играет рассеяние электронов проводимости на ионах расплава. Используем обычное соотношение для сечения рассеяния $n_{\rm a}L\sigma=1$, где σ — сечение рассеяния на атоме, $n_{\rm a}=N/V$, а N — число атомов в объеме V. Тогда уравнение (1) принимает вид:

$$\rho = \frac{m v_{\rm F}}{e^2 z} \sigma,\tag{2}$$

причем z — число электронов проводимости в расчете на атом (заряд иона).

Основным постулатом является положение, что сечения рассеяния электронов на ионах в двух этих явлениях совпадают [1—3]. Анализ показал [3, 4], что уравнение Друде—Зоммерфельда для проводимости металла $\kappa = 1/\rho$ должно быть скорректировано. Согласно Н. Мотту [5, 6], для плохих проводников оно принимает вид:

$$\varkappa = \frac{e^2 S L g^2}{12\pi^3 \hbar},\tag{3}$$

где S — площадь поверхности ферми-сферы. Здесь $g(\varepsilon_F)$ равно отношению плотности состояний на уровне Ферми к этой плотности в модели свободных электронов (МСЭ):

$$g = \frac{N(\varepsilon_F)}{[N(\varepsilon_F)]MC\Theta}.$$

Это уравнение было использовано в [1, 2, 7] для построения формализма обоих явлений переноса и для анализа опытных данных по электромиграции в двойных металлических растворах. Однако полученные при этом значения фактора д не согласовывались с его смыслом в теории Н. Мотта. Эти значения оказались пропорциональными теплоте испарения металла в расчете на единицу объема и были минимальными как раз у хороших проводников - щелочных металлов. Наоборот, у некоторых плохих проводников (Ge, Si) фактор g заметно больше единицы. Тем не менее расчетные множители д не зависят от способа вычисления и являются функцией состояния. Следовательно, вместо фактора д следует искать другую возможную поправку в уравнение Друде-Зоммерфельда.

В работе [4] такая поправка была найдена. Учитывая форму выражений (1) и (2), можно считать множитель (mv_F) средним значением изменения импульса электрона ΔP при рассеянии на ионе: $\Delta P=0$ при отсутствии отклонения и $\Delta P=2mv_F$ при отклонении на угол π . Это значение ΔP может зависеть от формы рассеивающего потенциала: чем больше преобладает рассеяние назад, тем больше будет среднее значение ΔP . Примем в качестве среднего значения изменения импульса при рассеянии в данном металле величину $\Delta P=bmv_F$ с поправочным коэффициентом b. Тогда уравнение Друде—Зоммерфельда запишется с поправкой в виде:

$$\varkappa = \frac{e^2 nL}{bm v_F} = \frac{e^2 SL}{12\pi^3 \hbar b} = \frac{e^2 S}{12\pi^3 \hbar n_a \sigma b}.$$
 (4)

Сравнивая с (3), мы видим, что расчеты альтернативного множителя b можно проводить точно так же, как и расчеты моттовского фактора g, но с последующей заменой по формуле

 $b=1/g^2$. Конечно, смысл факторов b и g — совершенно разный. Фактор b отвечает за пространственную форму вероятности рассеяния электрона и тем больше, чем сильнее преобладает рассеяние назад. По смыслу выражения (4) предполагается, что b < 2. Совместное рассмотрение данных по электросопротивлению и электромиграции позволяет рассчитать коэффициенты g и b и выбрать правильную трактовку уравнений (3) и (4).

Перейдем теперь к рассмотрению электромиграции в растворах. Как известно, основными параметрами являются заряды ионов z_i и сечения рассеяния σ_i (i — номер компонента). Полная сила, действующая на i-й ион, равна сумме силы поля и силы электронного ветра [1, 2, 8]:

$$F_i = eEz_i^* = eE\left(z_i - \sigma_i \frac{\overline{z}}{\overline{\sigma}}\right).$$
 (5)

Здесь e — элементарный заряд, E — напряженность поля. Величина z_i^* называется эффективным зарядом i-го иона. Эффективные заряды определяются истинными зарядами ионов и отношением сечений рассеяния электронов проводимости на ионах компонентов.

Выражение (5) представляет собой **основное уравнение** электромиграции [1, 2]. По отношению к моногенным растворам, где все частицы данного компонента ведут себя идентично, оно является точным и не требует каких-либо поправок.

Полная сила, действующая со стороны электрического поля на все частицы двойного раствора, равна нулю: то есть $X_1z_1^* + X_2z_2^* = 0$ (условие механического равновесия, X_i — атомные доли), откуда следует полезное соотношение:

$$z_1^* / X_2 = -z_2^* / X_1.$$
 (6)

Для отношения сечений рассеяния из (5) получается:

$$\frac{\sigma_{i}}{\overline{\sigma}} = \frac{z_{i} - z_{i}^{*}}{\overline{z}} \tag{7}$$

Среднее сечение рассеяния равно $\bar{\sigma} = X_1 \sigma_1 + X_2 \sigma_2$. Из данных по проводимости можно рассчитать среднее сечение $\bar{\sigma}$, а из данных по электромиграции — отношение сечений $\sigma_i/\bar{\sigma}$ и далее σ_2/σ_1 .

Наиболее надежным методом исследования электромиграции является метод стационарного распределения компонентов расплава в вертикальном капилляре (СРВК). При выдержке расплава под током в течение длительного времени в образце устанавливается стационарное состояние, описываемое уравнением [1]:

$$(d\ln a_i/d\ln X_i) \frac{d\ln X_i}{dx} = \frac{eEz_i^*}{kT},$$
 (8)

где x — координата длины образца, a_i — термодинамическая активность i-го компонента, E — напряженность поля, e — элементарный заряд, k — постоянная Больцмана, а $d\ln a_i/d\ln X_i$ — термодинамический фактор (TF). Производную от концентрации X_i по длине x вдоль капилляра находят с помощью химического, колориметрического или радиационного анализа. Если отношения сечений мало зависят от концентрации, то их можно рассчитать непосредственно из выражений:

$$z_1^* = \frac{\frac{z_1 \sigma_2}{\sigma_1} - z_2}{1 - (1 - \sigma_2 / \sigma_1) X_2} X_2$$
 и

$$z_{2}^{*} = \frac{\frac{z_{2}\sigma_{1}}{\sigma_{2}} - z_{1}}{1 - (1 - \sigma_{1} / \sigma_{2})X_{1}} X_{1}.$$
 (9)

Однако в большинстве случаев отношения σ_2/σ_1 зависят от состава.

В дифракционной модели металлических растворов Фейбера—Займана суммарное сечение рассеяния $\sigma_n = n_a \bar{\sigma}$ на атомах однокомпонентной жидкости выражается формулой [9]:

$$\sigma_n = \frac{1}{\pi} \left(\frac{m}{\hbar^2} \right)^2 n_a \left[\frac{1}{4k_F^4} \int_0^{2k_F} |u(K)|^2 a(K) K^3 dK \right], (10)$$

где $n_a = N/V$ — число атомов в единице объема, u(K) — форм-фактор псевдопотенциала взаимодействия ион-электрон, a(K) — структурный фактор жидкости. В случае бинарного раствора множитель $\left|U\left(K\right)\right|^2 a(K)$ под интегралом следует заменить на выражение:

$$F(K) = |V(K)|^{2} \langle a(K) \rangle =$$

$$= X_{1}^{2} u_{1}^{2} a_{11}(K) + X_{2}^{2} u_{2}^{2} a_{22}(K) +$$

$$+ 2X_{1} X_{2} u_{1} u_{2} [a_{12}(K) - 1].$$
(11)

Здесь X_1 и X_2 — атомные доли компонентов, $u_1(K)$ и $u_2(K)$ — форм-факторы псевдопотенциалов ион-электрон двух компонентов, $a_{11}(K)$, $a_{12}(K)$ и $a_{22}(K)$ — парциальные структурные факторы для пар 11, 12 и 22.

Т. Фейбер [10] предложил определить сечения σ_1 и σ_2 через подстановки в интеграл (10):

$$F_{1}(K) = \langle a(K) \rangle =$$

$$= X_{1}u_{1}^{2}a_{11}(K) + X_{2}u_{1}u_{2}[a_{12}(K) - 1]$$
и
$$F_{2}(K) = \langle a(K) \rangle =$$

$$= X_{2}u_{2}^{2}a_{22}(K) + X_{1}u_{1}u_{2}[a_{12}(K) - 1].$$
(12)

Эти выражения удовлетворяют условию $\bar{\sigma} = X_1 \sigma_1 + X_2 \sigma_2$, однако очевидно, что соотношения (12) — не единственное решение. Формулы (12) в практическом плане малопригодны для расчетов, поскольку и потенциалы, и структурные факторы известны обычно с не слишком большой точностью.

Чтобы установить прямую связь проводимости с электромиграцией, достаточно найти соотношение между средним сечением рассеяния $\bar{\sigma}$ и сечениями рассеяния атомов компонентов σ_1 и σ_2 . Для этого нужно использовать еще одно условие, относящееся к парциальным сечениям. Согласно [7, 9], вероятность рассеяния электрона определяется полным числом всех частиц раствора n. Она пропорциональна $n\bar{\sigma}$ и является, по принятой в термодинамике терминологии, экстенсивным свойством. Факторами интенсивности служат вероятности рассеяния на данной частице. Отсюда следует, что аналогично связи интегрального свойства и парциальных свойств в термодинамике можно записать:

$$\sigma_i = \partial(n \cdot \bar{\sigma}) / \partial n_i \tag{13}$$

при постоянных n_j ($j \neq i$). При этом сечения σ_i оказываются парциальными величинами и в случае двойной системы должны удовлетворять уравнению Гиббса—Дюгема $X_1 d\sigma_1 + X_2 d\sigma_2 = 0$. Касательная к графику $\bar{\sigma}(X_2)$ в точке X_2 отсекает на осях обеих ординат отрезки, равные σ_1 и σ_2 .

Если принять для проводимости металлического раствора выражения (3) и (4), а для электромиграции — выражения (5), (7) и (13), можно

получить прямую связь между этими явления- Ag-Cu-Sn можно получить три отношения ми в интегральной форме [1, 2, 4, 7, 11]:

$$\ln\left[\left(z_{1}\rho_{2}V_{2}\left(k_{F}^{2}g^{2}\right)_{2}\right)/\left(z_{2}\rho_{1}V_{1}\left(k_{F}^{2}g^{2}\right)_{1}\right)\right] = \\
= -\int_{0}^{1} \frac{z_{2}^{*}}{\bar{z}X_{1}} dX_{2}.$$
(14)

Здесь индекс 1 в левой части относится к чистому первому металлу, а индекс 2 — ко второму металлу. Индексы под интегралом означают номер компонента растворов (первый металл = первый компонент), интегрирование проводится от чистого 1-го компонента до 2-го. Отсюда можно рассчитать отношения факторов Мотта *g* в исследуемой паре металлов:

$$\frac{\left(k_F^2 g^2\right)_2}{\left(k_F^2 g^2\right)_1} = \frac{z_2 \rho_1 V_1}{z_1 \rho_2 V_2} \exp\left\{-\int_0^1 \frac{z_2^*}{z X_1} dX_2\right\}, \quad (15)$$

причем, согласно МСЭ,

$$(k_F^2)_2 / (k_F^2)_1 = \left(\frac{z_2 V_1}{z_1 V_2}\right)^{2/3}.$$

Для дальнейшего введем обозначение интеграла

$$I_1^2 = \int_0^1 \frac{z_2^*}{\bar{z}X_1} dX_2.$$

При переходе к записи уравнения Друде-Зоммерфельда (4) с поправочным коэффициентом b следует в выражениях (14), (15) заменить g^2 на 1/b.

Важной частью исследования является проверка на «сшиваемость» (consistency rule). Если фактор д является функцией состояния, то данные для трех двойных систем A-B, B-C и C-Aдолжны удовлетворять условию сшиваемости $A = (g_2 g_1)^* (g_3 / g_2)^* (g_1 / g_3) = 1$, где факторы g равны их значениям в чистых компонентах (и, соответственно, для коэффициентов b). Этому выражению эквивалентно условие

$$I_1^2 + I_2^3 + I_3^1 = 0. (16)$$

С этой целью была исследована электромиграция более чем в 30 двойных металлических системах [2, 12]. Используя значения g_i/g_i из выражений типа (9), для треугольника

факторов g [2]:

$$A = \frac{g_{Ag}}{g_{Sn}} \frac{g_{Sn}}{g_{Cu}} \frac{g_{Cu}}{g_{Ag}} = (1.11 \pm 0.02)(0.76 \pm 0.01) \times (1.165 \pm 0.01) = 0.98 \pm 0.03$$

Соответственно для треугольника Hg-In-Tl:

$$A = \frac{g_{\text{Hg}}}{g_{\text{In}}} \frac{g_{\text{In}}}{g_{\text{Tl}}} \frac{g_{\text{Tl}}}{g_{\text{Hg}}} = 0.342 / (0.771 \times 0.448) =$$
$$= 0.991 \pm 0.030.$$

Следовательно, для этих треугольников правило сшиваемости (consistecy rule) хорошо выполняется. Это означает, что величина фактора д не зависит от способа расчета, те есть фактор д является функцией состояния, такой же, как, например, объем или плотность.

В табл. 1 приведены значения факторов сшиваемости А для ряда треугольников, рассчитанные по выражению (14). В большинстве случаев наблюдается хорошая сшиваемость. Однако для некоторых из них факторы A заметно отличаются от единицы. Сюда относятся, например, треугольники систем Na-K-Cs и Hg-Na-K. Они характеризуются высокими максимумами на изотермах электросопротивления двойных систем и большими отрицательными значениями эффективных зарядов в области сильно разбавленных растворов. Кроме того, в случае щелочных металлов точность расчетов понижена в связи с наличием инверсии электромиграции, когда небольшое значение интеграла I_1^2 равно сумме двух больших величин с разнами знаками.

Как правило, эффективные заряды примесей в щелочных металлах имеют большие отрицательные значения (до –35 в растворах примесей ртути в жидком натрии). Одно из объяснений этого эффекта — образование комплексов между атомами примеси и растворителя. В случае такого комплексообразования растворы перестают быть моногенными, и свойства таких растворов - «полигенных» — должны включать параметры комплексов [1]. При этом условия сшиваемости треугольников соответствующих систем могут нарушаться.

Из табл. 1 видно, что значения истинных зарядов ионов можно выбирать по условию наилучшей сшиваемости.

Таблица 1. Проверка правила сшиваемости [2]

Треугольник	A
Cd-Bi-Pb	1.057 ± 0.04
Sn-Bi-Pb	1.077 ± 0.04
Cd-Sn-Bi	0.99 ±0.04
Ag-Cu-Sn	0.98 ± 0.03
Ag-Cu-Ge	1.03 ± 0.03
K–Na–Cs	0.97 ± 0.12
Cd-In-Tl, $z_{Tl} = 3$ всюду	0.995
Cd-In-Tl, $z_{Tl} = 5$ всюду	1.092
Cd-In-Tl, $z_{Tl} = 2$ всюду	0.930
$Hg-In-Tl, z_{Tl}=3$ всюду	0.991 ± 0.03

Данные по проводимости и электромиграции позволяют рассчитывать не абсолютные значения факторов g и b, а относительные. Ранее [1, 2] значение g кадмия было условно принято равным 1. Соответствующие значения моттовского фактора g и фактора b приведены в табл. 2 [2]. Факторы b возрастают с увеличением теплоты испарения единицы объема металла.

Эти результаты показывают, что расчетные значения фактора g не согласуются с исходными положениями теории Мотта. Как известно, щелочные металлы довольно хорошо описываются моделью свободных электронов. Отклонения от МСЭ у Na, K и Cs невелики [13, 14]. Однако значения g у щелочных металлов оказались значительно ниже, чем у металлов средней части Периодической системы (см. табл. 2).

Экспериментальные работы в области электромиграции в жидких расплавах были выполнены в основном в 60—70-х годах прошлого века, причем в ряде случаев были использованы недостаточно точные данные по термодинамическим свойствам и электросопротивлению растворов [2, 12]. В настоящей статье данные по электромиграции в системах щелочных металлов пересчитаны с учетом более точных термодинамических данных. С этой целью ниже рассмотрены двойные системы, образующие треугольники Na—K—Cs и Hg—Na—Cs.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Треугольник Na–K–Cs. В этом разделе рассмотрены три двойные системы: K–Na, Na–Cs и Cs–K при температуре 110 °C. На фазовой диаграмме системы K–Na имеются соединение KNa₂, плавящееся с разложением при 6.6 °C, и эвтектическая горизонталь при –12.5 °C. Взаимная растворимость в твердых фазах отсутствует. На фазовой диаграмме Cs–K виден непрерывный ряд твердых растворов с глубоким минимумом на кривых ликвидус и солидус. Диаграмма системы Cs–Na похожа на K–Na: с неустойчивым соединением CsNa₂.

На изотермах электросопротивления трех двойных систем видны высокие («параболические») пики в средней области концентраций [2].

Термодинамические свойства двойных систем значительно различаются. Термодинамические факторы $TF = d \ln a_1/d \ln X_1 = d \ln a_2/d \ln X_2$ равны 1 в предельно разбавленных растворах, а в средней области концентраций при 110 °C похожи на цепные линии в системах Cs–K (TF ≈ 0.913 при $X_2 = 0.7$) и K–Na (TF ≈ 0.57 при $X_2 = 0.7$). Следовательно, эти растворы близки к идеальным. В системе Na–Cs отклонения от идеальности более значительны и при 110 °C TF проходят через глубокий минимум (TF ≈ 0.2 при $X_1 = 0.8$).

Структура расплавов описывается тремя парциальными структурными факторами $a_{11}(K)$, $a_{12}(K)$ и $a_{22}(K)$, которые измерены для системы K—Na [15]. Высокий пик ρ является следствием большого вклада структурного фактора $a_{12}(K)$ в рассеяние излучения при дифракции или рассеянии электронов в явлении проводимости.

По данным [2], параметр сшиваемости треугольника K—Na—Cs при 110 °C равен 0.97, однако неясна точность использованных термодинамических множителей.

На примерах этих систем можно выяснить, в частности, являются ли сечения рассеяния σ_1 и σ_2 парциальными величинами по отношению к среднему $\bar{\sigma}(X_i)$. В этом случае на графике зависимости $\bar{\sigma}(X_i)$ точка максимума должна являться точкой перегиба для отношения σ_1/σ_2 .

При переходе от «старых» значений ТF к новым использовали старые значения эффективных зарядов z_c^* из [16] и находили новое значение

,	1 0		· (ocu			
Металл	T, °C	g/g _{Cd} [2]	b/b _{Cd}	$\Delta H_{ m subl},$ кДж/	$V_{\rm mol}$, cm ³ /mol	$\Delta H_{ m subl}/V,$ кДж/см 3
Cs	110	(0.31)	(10.4)	75.24	72.2	1.042
K	110	(0.51)	(3.84)	87.72	42.35	2.071
Na	250	0.956	1.42	104.68	24.50	4.272
Te	500	0.58	2.97	49.83	22.15	2.249
Hg	300	0.77	1.69	60.88	14.67	4.150
Cd	300-500	1	1.00	103.59	14.07	7.362
Zn	500	1.09	0.84	119.58	9.82	12.177
Tl	350	1.07	0.87	170.83	18.08	9.449
In	350	1.18	0.72	232.63	16.32	14.254
Ga	300	1.29	0.60	296.86	11.44	25.949
Al	580	1.33	0.57	298.53	10.96	27.238
Pb	300-500	1	1.00	190.26	19.08	9.609
Sn	300-500	1.23	0.66	287.94	16.96	16.978
Ge	1100	1.58	0.40	498.25	13.2	37.746
Bi	300-500	1	1.00	171.88	20.8	8.263
Sb	(500)	1.17	0.73	240.75	18.8	12.806
Ag	1100	1.38	0.53	265.04	11.36	23.331
Cu	1100	1.63	0.38	304.81	7.57	40.266

Таблица 2. Факторы g и b по кадмиевой шкале ($g_{Cd} = 1.00$)

$$z_{_{H}}^{*}$$
 по формуле: $\frac{z_{_{H}}^{*}}{z_{_{C}}^{*}} = \frac{TF_{2}}{TF_{1}}$. «Истинные» заряды

ионов были приняты равными 1. В статьях 1972 г. не указано, как вычисляли напряженность поля E. Поэтому в настоящей работе поправки на электросопротивление расплавов не вносились.

Система K—Na (первый компонент — K). В [17] измерено электросопротивление расплавов K—Na при 100 °C. В [16] также измеряли величину ρ при 110 °C 4-контактным методом. Значения ρ при 110 °C в [16, 17] неплохо согласуются.

Термодинамические факторы ТF были рассчитаны в [16] по данным [19]. При пересчете использовали данные справочника [20]. При 384 К термодинамическая активность $a_{Na}(K)$ (далее — $a_2(K)$) хорошо описывается выражением:

$$a_{Na}(K) = 1.4826X_2^3 - 2.8494X_2^2 + 2.3659X_2 + 0.001$$
 (17)
 $(R^2 = 0.9999),$

где X_2 — мольная доля натрия. Отсюда был рассчитан термодинамический множитель TF_2 .

Старые и новые значения TF_1 и TF_2 приведены в табл. 3.

Эффективные заряды компонентов были измерены в [21] при 51—304 °С для нескольких растворов, а также в [16] во всем интервале составов при 110 °С методом СРВК. Концентрации компонентов вдоль капиллярных образцов находили в [16] химическим анализом. Эффективные заряды, найденные в [16], показаны на рис. 1. В сильно разбавленных растворах на основе Na или K эффективные заряды равнялись примерно —20 [22].

Таблица 3. Пересчет данных [2, 16] для уточнения
расчетов в системе K-Na при 110 °C

V	Электросопро- тивление		амический итель
X _{Na}	ρ [17,18]	TF ₁ [19]	TF ₂ [20]
0	17.35	1	1
0.1	26.25	0.78	0.874
0.2	34.26	_	0.755
0.3	40.25	0.64	0.641
0.4	41.88	_	0.544
0.5	41.94	0.58	0.478
0.6	40.20	_	0.460
0.7	34.87	0.57	0.506
0.8	27.79	_	0.630
0.9	19.03	0.84	0.837
1	10.13	1	1

Результаты пересчетов приведены в табл. 4. Эффективные заряды в системе K-Na («новые») и отношения $z_{\text{Na}}^*/X_{\text{K}}$ приведены в табл. 4 и на рис. 2. Интеграл

$$I_{\rm K}^{\rm Na} = \int_{0}^{1} \frac{z_2^*}{z X_1} dX_2$$

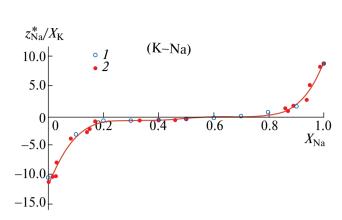
(второй компонент — Na) был рассчитан по новым данным табл. 4 с помощью формулы трапеций. Его величина равна $I_{\rm K}^{\rm Na}=-0.3010$. Без учета термодинамической поправки интеграл равен -0.2680. В [16] было получено близкое значение -0.243. Различие двух значений -0.2680 и -0.243 связано с разными способами вычисления интеграла.

Дальнейшие расчеты для этой системы выглядят следующим образом. При 110 °C $V_1=47.90$ и $V_2=24.8$ см 3 /моль, $\rho_1=17.35$ и $\rho_2=10.13$ мкОм/см. Далее, согласно (15),

$$\ln \left[\frac{(10.13 \times 24.8) / (17.35 \times 47.9) \times}{\times (k_F^2 g^2)_{Na} / (k_F^2 g^2)_{K}} \right] = 0.3010.$$

Введем обозначение

$$\theta_{K}^{\text{Na}} = \left(k_{\text{F}}^{2}g^{2}\right)_{\text{Na}} / \left(k_{\text{F}}^{2}g^{2}\right)_{\text{K}} = 4.4699,$$

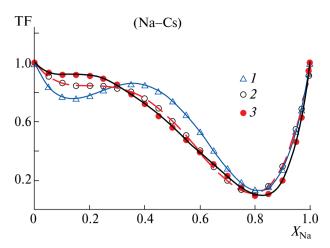

$$\left[\left(k_{\text{F}}^{2}\right)_{\text{Na}} / \left(k_{\text{F}}^{2}\right)_{\text{K}}\right]_{\text{MCP}} = \left(V_{1} / V_{2}\right)^{2/3} = 1.5509.$$

Отсюда $g_{\mathrm{Na}}/g_{\mathrm{K}}=1.698$ и, наконец, $b_{\mathrm{K}}/b_{\mathrm{Na}}=(g_{\mathrm{Na}}/g_{\mathrm{K}})^2=2.882.$

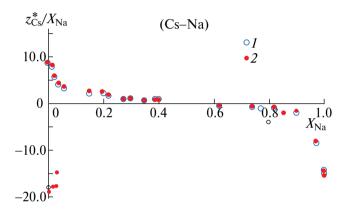
Система Cs-Na (1-й компонент — Cs). Структура расплавов исследована в [23]. Электросопротивление было измерено в [17, 24, 25], а также в [30] при 110, 150 и 200 °C. Экспертные данные по электросопротивлению серии

Таблица 4. Эффективные заряды в системе К-Na (старые [16] и новые)

$X_{ m Na}$	z _{Na} [16]	z _{Na} *	z _{Na} / X _K	$X_{ m Na}$	z _{Na} [16]	z _{Na} *	z _{Na} / X _K
0.000			-11.000	0.460	-0.29	-0.276	-0.511
0.015	-9.98	-10.034	-10.187	0.500	-0.16	-0.147	-0.294
0.026	-9.62	-9.730	-9.990	0.860	0.23	0.207	1.477
0.030	-7.36	-7.460	-7.691	0.870	0.14	0.127	0.975
0.080	-3.24	-3.373	-3.667	0.890	0.22	0.202	1.840
0.140	-2.04	-2.211	-2.571	0.940	0.18	0.172	2.875
0.150	-1.84	-1.703	-2.004	0.950	0.28	0.270	5.409
0.170	-1.0	-0.576	-0.694	0.986	0.12	0.119	8.486
0.330	-0.38	-0.403	-0.601	1.000	0	0	9.000
0.400	-0.31	-0.311	-0.519	_	_	_	_


Рис. 1. Отношения $z_{\text{Na}}^*/X_{\text{K}}$: I-[16], 2- настоящая работа.

двойных систем щелочных металлов приведены в [18]. В системе Cs—Na форма изотерм—параболическая с максимумом при 60 ат.% Cs.


Термодинамические свойства расплавов измеряли в [26-29]. Термодинамические множители ТF были рассчитаны в [30] по теплоте смешения и фазовой диаграмме. Они приведены в табл. 5. Кроме того, мы рассчитали ТF при 110 °C по данным работ [26, 27] и справочника [18]. Результаты этих расчетов показаны на рис. 2. Значения TF разных работ заметно различаются. Мы выбрали для расчетов данные [26] (табл. 5). Этот термодинамический множитель аппроксимируется выражением $(X_2 -$ мольная доля Na):

$$d\ln a_2 / d\ln X_2 = 69.67 X_2^6 - 188.81 X_2^5 + + 201.38 X_2^4 - 103.45 X_2^3 + 23.531 X_2^2 - - 2.3395 X_2 + 1.0035.$$
 (18)

Электромиграция в системе Cs—Na была исследована во всем интервале составов при температурах 110, 150 и 200 °С методом СРВК, а также по изменению сопротивления металла в капилляре [30]. Оба метода дают близкие результаты. В системе Cs—Na наблюдается инверсия направления электромиграции вблизи состава ~50% Na. В интервале 40—60 ат. % компонентов эффективные заряды очень малы. «Новые» значения эффективных зарядов z рассчитаны ниже с учетом термодинамических данных [26]. Результаты приведены в табл. 6. Отношения $z_{\rm Na}^*/X_{\rm Cs}$ даны в таблице и на рис. 3.

Рис. 2. Термодинамические множители ТF: 1 -по данным [30], 2 -по [18], 3 -по [26].

Рис. 3. Отношения $z_{\text{Na}}^*/zX_{\text{Csa}}$ при 110 °C: 1 — данные [30], 2 — настоящая работа.

Таблица 5. Пересчет данных [2, 30] для системы Cs—Na при 110 °C

	Электросопро-	Термодинамический		
v	тивление	множитель		
X_{Na}	o [10]	TF_1	TF_2	
	ρ [18]	[30]	по [26]	
0	45.47	1	1.0000	
0.1	85.20	0.75	0.9341	
0.2	125.30	0.77	0.8996	
0.3	153.52	0.89	0.8423	
0.4	164.86	0.85	0.7338	
0.5	159.45	0.7	0.5717	
0.6	140.65	0.5	0.3789	
0.7	113.26	0.32	0.2045	
0.8	81.62	0.18	0.1230	
0.9	47.81	0.25	0.2351	
0.95	28.90	0.48	0.4020	
1	10.13	1	1	

	The state of the s						
$X_{ m Na}$	$z_{\mathrm{Na}}^{*}[30]$	z_{Na}^{*}	$z_{\text{Na}}^*/\bar{z}X_{\text{Cs}}$	$X_{ m Na}$	$z_{\mathrm{Na}}^{*}[30]$	z_{Na}^{*}	$z_{\text{Na}}^*/\bar{z}X_{\text{Cs}}$
0	-8.9	-9.000	9.000	0.40	-0.57	-0.483	-0.81
0.014	-7.86	-8.162	8.278	0.50	_	_	_
0.025	-5.50	-5.836	5.986	0.60	_	~0.01	~0.01
0.04	-3.89	-4.250	4.427	0.62	0.15	0.113	0.296
0.06	-3.05	-3.456	3.676	0.74	0.169	0.139	0.536
0.10	_	-3.04	3.38	0.77	0.215	0.177	0.768
0.15	-1.89	-2.299	2.704	0.82	0.145	0.107	0.593
0.20	-1.78	-2.093	2.617	0.90	0.200	0.148	1.477
0.22	-1.32	-1.515	1.943	0.97	0.255	0.238	7.926
0.275	-0.77	-0.811	-1.12	0.985	0.303	0.370	24.88
0.30	-0.71	-0.816	-1.17	0.997	0.043	0.043	14.33
0.35	-0.53	-0.488	-0.75	0	0	0.000	15.35
0.39	-0.55	-0.474	-0.78	_	_	_	_

Таблица 6. Эффективные заряды в системе Cs-Na («старые» и новые)

График очень похож на аналогичную зависимость для системы К-Na.

Интеграл $I_{\text{Cs}}^{\text{Na}} = \int_{0}^{1} \frac{z_{2}^{*}}{zX_{1}} dX_{2}$ от функции $z_{\text{Na}}^{*} / zX_{\text{Cs}}$ в пределах от $X_{\text{Na}} = 0$ до 1 рассчитывали методом трапеций. Он равен $I_{\text{Cs}}^{\text{Na}} = 0.2170$ (по данным [30] получается $I_{\text{Cs}}^{\text{Na}} = 0.2330$, а при использовании TF, рассчитанного по данным [18], получается $I_{\text{Cs}}^{\text{Na}} = 0.3006$). Отсюда по формуле (14) при 110 °C находим (1-й компонент — Cs): $V_{1} = 74.10$ и $V_{2} = 24.8$ см³/моль, $\rho_{1} = 45.47$ и $\rho_{2} = 10.13$ мкОм/см. Далее: $\ln\left(\theta_{\text{Cs}}^{\text{Na}} 10.13 \times 24.8/45.47/74.1\right) = -0.2170$. $\theta_{\text{Cs}}^{\text{Na}} = 10.80$ (в [30] $\theta_{\text{Cs}}^{\text{Na}} = 13.80$). Кроме того, $\left[\theta_{\text{Cs}}^{\text{Na}}\right]$ *FEM* = $(74.1/24.8)^{2/3} = 2.0745$. В итоге g_{Na} / $g_{\text{Cs}} = (10.80/2.0745)^{1/2} = 2.281$ и $b_{\text{Cs}}/b_{\text{Na}} = 2.281^{2} = 5.204$.

В [2] получено $g_{\rm Na}/g_{\rm Cd}=0.84$. Отсюда, по кадмиевой шкале, $g_{\rm Cs}/g_{\rm Cd}=(g_{\rm Na}/g_{\rm Cd})(g_{\rm Cs}/g_{\rm Na})=0.2864$. Наконец, $b_{\rm Cs}/b_{\rm Cd}=(1/0.2864)^2=12.19$.

Система Сs—К (1-й компонент — Сs). Структура расплавов исследована в [31, 32]. Электросопротивление было найдено в [24, 25, 33], а также в [30] при 110, 150 и 200 °С. Экспертные данные по электросопротивлению приведены в [18] (табл. 7). В системе Сs—К форма изотерм — параболическая с максимумом при ~70 ат. % Сs. Данные [18, 30] в целом близки, но с небольшим

завышением сопротивления в [30] вблизи максимума.

Термодинамические свойства расплавов были измерены в [32, 34], а также рассчитаны псевдопотенциальным методом в [35]. Согласно [32], система ведет себя как почти идеальная. Термодинамические множители рассчитаны в [30] приближенно по теплоте смешения и фазовой диаграмме. Они приведены в табл. 7. Ниже эти множители для температуры $110~^{\circ}$ С пересчитаны по данным [18]. Термодинамические множители аппроксимируются выражением ($x = X_K$):

$$d\ln a_K / d\ln x = 24.036x^5 - 69.596x^4 +$$

$$+70.082x^3 - 27.888x^2 + 3.3679x + 0.9953, (19)$$

$$(R^2 = 0.9904)$$

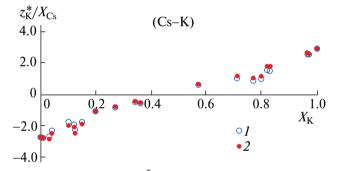
Результаты этих расчетов также приведены в табл. 7.

Из рис. 4 видно, что отклонения от идеальности в системе Cs—К весьма невелики, а старые и новые данные очень близки. Интеграл

$$I_{\text{Cs}}^{\text{K}} = \int_{0}^{1} \frac{z_{2}^{*}}{z X_{1}} dX_{2}$$

(второй компонент - K) от функции z_{K}^{*}/zX_{Cs} в пределах от $X_{K}=0$ до 1, рассчитанный

по данным табл. 8 и по формуле трапеций, ра- Таблица 7. Пересчет данных [2, 30] для системы вен $I_{Cs}^{K} = 0.1944$. Расчет по данным [30] приво- Cs-K при 110 °C дит к значению 0.1237 (в [30] получено 0.123). Далее, при 110 °C $V_1 = 74.10$ и $V_2 = 47.9$ см³/моль, $\rho_1 = 45.47$ и $\rho_2 = 17.35$ мкОм/см. Считаем по уравнению (14): $\ln \left[\theta_{\text{Cs}}^{\text{K}} \frac{17.3547.9}{45.4774.1} \right] = -0.1944,$ $\theta_{\text{Cs}}^{\text{K}} = 3.3380, \left[\theta_{\text{Cs}}^{\text{K}}\right] FEM = (74.1/47.9)^{2/3} = 1.3376,$ $g_{\text{K}}/g_{\text{Cs}} = (3.3380/1.3376)^{1/2} = 1.580$ и $b_{\text{K}}/b_{\text{Cs}} =$ $= 1/1.580^2 = 0.4007$. По данным для системы $Cs-Na\ g_{Cs}\ /g_{Cd}=0.2864.$ Отсюда: $g_{K}/g_{Cd}=(g_{K}/g_{Cs})_{*}$ $*g_{\text{Cs}}/g_{\text{Cd}} = 1.7427 \times 0.2864 = 0.4991 \text{ M } b_{\text{K}}/b_{\text{Cd}} =$ $= 1/0.4991^2 = 4.014.$


Проверка сшиваемости треугольника Cs-Na-K. Проверим сшиваемость треугольниκα Cs-Na-K: $A = (g_K/g_{Na}) \times (g_{Na}/g_{Cs}) \times (g_{Cs}/g_K) =$ $(1/1.6977) \times 2.281/1.580 = 0.850$. Эта величина заметно отличается от единицы. Второй способ – проверка уравнения (16): $I_{\rm K}^{\rm Na}+I_{\rm Na}^{\rm Cs}+I_{\rm Cs}^{\rm K}=-0.301+0.2170+0.1944=0.110.$

Эта сумма также заметно отличается от нуля, то есть сшиваемость треугольника K-Na-Cs невысока. Без учета сделанных в настоящей работе термодинамических поправок расчеты дают $A = 0.97 \pm 0.12$ [2]. Причина отклонений от правила сшиваемости заключается, видимо, в пониженной точности расчетов в системах с инверсией направления электромиграции. Значение интегралов I_1^2 равно сумме двух вкладов с разными знаками (например, в случае Na-Cs: 0.2170 = 1.1120 - 0.895), что обуславливает значительную величину ошибки расчета.

Треугольник Hg-K-Na. Данные о сшиваемости этого треугольника можно найти в монографии [2]. При температуре 110 °С отношение $g_{\rm K}/g_{\rm Na} =$ =0.61, а при 250 °C отношения $g_{\rm Hg}/g_{\rm K}=1.52$ $u g_{\text{Na}}/g_{\text{Hg}} = 1.043$. Если принять, что отношения g_2/g_{Hg} g_1 слабо зависят от температуры, то тогда характеристика сшиваемости $A = (g_K/g_{Na}) \times (g_{Hg}/g_K) \times$ $\times (g_{Na}/g_{Hg}) = 0.96$ близка к единице, так что в этом треугольнике сшиваемость неплохая, несмотря на то что во всех трех системах наблюдается инверсия направления электромиграции.

Система Hg–Na. На фазовой диаграмме этой системы видно несколько интерметаллидов: NaHg₄, NaHg₂, Na₇Hg₈, NaHg, Na₃Hg₂, Na₅Hg₂ и Na₃Hg. Самое устойчивое соединение – NaHg₂ плавится при 353 °C. Структура расплавов исследована в [36]. В этих расплавах наблюдаются сильные отклонения от термодинамической

V	Электросопро- тивление		амический итель
X_{K}	ρ [18]	TF ₁ [30]	ТF ₂ по [18]
0	45.47	1	1
0.1	53.00	0.999	1.099
0.2	57.84	0.988	1.026
0.3	59.94	0.970	0.888
0.4	59.52	0.950	0.822
0.5	56.79	0.931	0.861
0.6	51.97	0.917	0.965
0.7	45.29	0.913	1.063
0.8	36.96	0.923	1.096
0.9	27.20	0.951	1.050
1	16.22	1.000	1.000

Рис. 4. Отношения z_{K}^{*} / zX_{Cs} при 110 °C: 1 - данные [30], 2 – настоящая работа.

идеальности. Электромиграцию в расплавах исследовали неоднократно. Примесь Na в Hg мигрирует к аноду [37]. Р. Креманн [38] обнаружил при 240 °C явление инверсии вблизи 15 ат. % Nа.

Дракин С.И. и др. [39] изучали электромиграцию примеси Hg в Na методом стационарного распределения в спиральных капиллярах при 110 °C, однако в этой работе играла роль конвекция [40]. В сплаве Na с 0.5 ат. % Нg исследована электромиграция при 154 °C [41] ($z^*_{Hg} = -50$). В работах [40, 42] изучена температурная зависимость электромиграции примесей Na и Hg; при 0.87 и 4.08 ат. % Na z^*_{Na} при нагревании меняет знак с минуса на плюс при 290 °C.

X_{K}	$z_{\mathrm{K}}^{*}[30]$	z*_K	$z_{\rm K}^*/\bar{z}X_{\rm Cs}$	X_{K}	$z_{\mathrm{K}}^{*}[30]$	z*κ	$z_{\rm K}^*/\bar{z}X_{\rm Cs}$
0	-2.710	-2.741	-2.741	0.36	-0.345	-0.333	-0.521
0.006	-2.710	-2.822	-2.839	0.57	0.295	0.318	0.739
0.03	-2.560	-2.915	-3.005	0.71	0.310	0.380	1.311
0.04	-2.160	-2.525	-2.630	0.77	0.210	0.264	1.350
0.1	-1.560	-1.949	-2.166	0.8	0.210	0.265	1.050
0.12	-1.630	-2.032	-2.309	0.82	0.290	0.366	1.600
0.125	-1.930	-2.401	-2.744	0.83	0.270	0.340	1.590
0.15	-1.450	-1.774	-2.087	0.965	0.092	0.105	2.640
0.2	-0.842	-0.974	-1.217	0.97	0.078	0.089	2.630
0.27	-0.575	-0.605	-0.828	1	0	0	2.640
0.34	-0.280	-0.274	-0.415	_	_	_	_

Таблица 8. Эффективные заряды в системе Cs–K («старые» [30] и новые)

Электросопротивление расплавов Na-Hg исследовали в работах [42-46]. Значения ρ чистых компонентов при 250 °C приведены в [47, 48]. Для растворов, богатых натрием, наблюдается разброс данных. В [43] изотерма электросопротивления измерена при 350 °C. В интервале от 22 до 47 ат. % Na система двухфазна, с выпадением соединения NaHg₂. Л.И. Аксенова [49] также исследовала явления переноса в расплавах Hg-Na при 250 °C. Электросопротивление ρ определяли капиллярным методом (см. табл. 9), а электромиграцию - методом СРВК и капиллярно-резервуарным методом. Для сравнения результатов данные [43] пересчитаны нами приближенно на температуру 250 °C. С этой целью значения р на изотерме работы [43] были уменьшены на $\Delta \rho = -14.9 +$ $+ 11.45 X_{\text{Na}}$ мкОм/см, чтобы получить согласие с опытом для чистых компонентов. Найденные значения р из [49] хорошо согласуются с пересчитанными данными [43]. Далее в расчетах использованы данные [43].

Термодинамический множитель был рассчитан по данным справочника [20] при 673 К. Таблица значений $\ln \gamma_{\rm Hg}$ была аппроксимирована полиномом 5-й степени:

$$ln\gamma_{Hg} = 52.997x^5 - 142.64x^4 + 120.28x^3 - -29.035x^2 + 4.4649x - 6.0519$$
 (20)
$$(R^2 = 0.9995)$$

Здесь $x = X_{Hg}$. Далее рассчитаны коэффициенты активности при 523 К по приближенной формуле $T_2(\ln \gamma)_{T2} = T_1(\ln \gamma)_{T1}$ и найдены значения множителя ТF (см. табл. 9). Они довольно близки к использованным в [49].

Эффективные заряды Na, найденные в [49] («старые»), и новые приведены в табл. 10 и на рис. 5. Они пересчитаны с учетом термодинамических данных [20]. По этим зарядам найдены значения функции z_2^* / zX_1 и рассчитан интеграл

$$I_1^2 = \int_0^1 \frac{z_2^*}{zX_1} dX_2$$

(2-й компонент — Na). В итоге методом трапеций получено $I_1^2 = 1.953$. При учете значений z^* из [49] (без поправки) этот интеграл равен 1.831. В [49] приведено значение 1.595. Последние два числа различаются из-за разных способов вычисления интеграла I_1^2 .

Далее, при 250 °C $V_1 = 15.44$ и $V_2 = 25.78$ см³/моль [48], $\rho_1 = 120.6$ и $\rho_2 = 14.85$ мкОм/см [47]. Считаем по формуле (14):

$$ln\bigg[\theta_{Hg}^{Na}\frac{14.85\times25.78}{120.6\times15.44}\bigg] = -1.953, \theta_{Hg}^{Na} = 0.6899.$$

Далее,

$$\left[\theta_{Hg}^{Na}\right]\!FEM = \left(1\,/\,25.78\,/\,2\!\times\!15.44\right)^{2/3} = \ 0.4476.$$

Отсюда $g_{\text{Na}}/g_{\text{Hg}}=(0.6899/0.4476)^{1/2}=1.2415$ и $b_{\text{Na}}/b_{\text{Hg}}=1/1.2415^2=0.6488$. Если провести тем же методом трапеций расчеты непосредственно по данным [49], получается

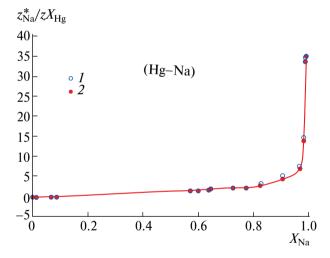
$$\ln \left[\theta_{\text{Hg}}^{\text{Na}} \frac{14.85 \times 25.78}{120.6 \times 15.44} \right] = -1.831 \text{и } g_{\text{Na}} / g_{\text{Hg}} = 1.3196.$$

Система Hg—K. Эта система похожа на предыдущую. В твердом состоянии K и Hg образуют интерметаллиды KHg_8 , KHg_4 , KHg_3 , KHg_2 , KHg. Наиболее устойчивое соединение KHg_2 плавится при 270 °C. При 250 °C в области 29—40 ат. % K система двухфазна из-за выпадения твердой фазы KHg_2 . Структура расплавов исследована в [36].

Электросопротивление расплавов изучено в работах [43, 49—52]. Изотермы ρ имеют параболическую форму. В [50] измерено электросопротивление жидких сплавов с содержанием ртути от 0 до 10 ат. %. Данные работ [49, 50] хорошо согласуются в указанном интервале. При $0 < X_{\rm K} < 0.6$ имеет место согласие данных [43, 49]. На участке $X_{\rm K} > 0.7$ в работе [49] данных недостаточно. Поэтому ниже приняты данные из [43] на всей изотерме 250 °C.

«Старые» значения ТF приведены в [49], а новые рассчитаны ниже по данным справочника [20] при 327 °С. Эти данные хорошо аппроксимируются полиномом ($x = X_{Hg}$):

$$\ln(\gamma_{Hg}) = 6.3181x^6 - 9.5981x^5 - 44.113x^4 + 80.54x^3 - 28.722x^2 - 0.423x - 4.0115$$


$$(R^2 = 0.9992).$$

Далее эти величины были пересчитаны на температуру 523 К = 250 °C по формуле: $T_1 \ln(\gamma_1)_{T1} = T_2 \ln(\gamma_1)_{T2}$, рассчитан TF при 250 °C. Он проходит через высокий максимум (TM = 11.2) при $X_{\rm Hg} = 0.76$ и через глубокий минимум (TM = 0.219) при $X_{\rm Hg} = 0.20$ (см. табл. 11). Множитель в [49] отличается отсутствием этого минимума.

Электромиграцию примесей К в Нд исследовали в работах [37, 38, 49, 52]. В системе Нд—К наблюдается инверсия ЭП при 11—14 ат. % К [2, 38]. Измерения при 250 °С в области 29—40 ат. % К провести нельзя из-за выпадения твердой фазы. Л.И. Аксенова и др. [2, 49] исследовали электромиграцию в расплавах Нд—К при 250 °С аналогично системе Nа—Нд. Эффективные заряды, полученные в [49], показаны

Таблица 9. Пересчет данных [2, 30] для расчетов в системе Hg—Na при 250 °C

V	Электросо- противление	_	имический итель
$X_{ m Na}$	ρ [43]	TF ₁ [49]	ТF ₂ по [20]
0.0	120.6	1	1.000
0.1	120.5	3.97	3.780
0.2	115.5	6.28	6.515
0.3	109.8	_	8.700
0.4	115.9	_	9.204
0.5	124.3	7.95	8.001
0.6	130.6	5.97	5.756
0.7	129.3	3.5	3.417
0.8	119.8	1.7	1.809
0.9	89.0	1	1.222
1.0	14.85	1	1.000

Рис. 5. Зависимость от состава величины $z^*_{\rm Na}/zX_{\rm Hg}$ при 250 °C: I= [49], Z= настоящая работа.

в табл. 12. Эти заряды пересчитаны с учетом новых ТF, и по ним рассчитан методом трапеций интеграл $I_{\rm Hg}^{\rm K}=1.6108$. С учетом зарядов, приведенных в [49], но без поправок интеграл равен 2.201. В [49] приведено значение 1.78. Различие этих чисел объясняется разными способами вычисления интегралов.

Зависимость эффективных зарядов от концентрации в системе Hg—К показана на рис. 6. Эти

$X_{ m Na}$	z _{Na} [49]	z* _{Na}	$z_{Na}^* / \overline{z}X_{Hg}$	$X_{ m Na}$	z _{Na} [49]	z* _{Na}	$\frac{z_{\text{Na}}^*}{\bar{z}X_{\text{Hg}}}$
0.000	-0.43	-0.429	-0.2147	0.730	0.710	0.704	2.0537
0.0135	-0.731	-0.717	-0.3657	0.780	0.564	0.595	2.2175
0.066	-0.566	-0.538	-0.2980	0.830	0.528	0.598	3.0073
0.067	-0.696	-0.662	-0.3671	0.910	0.417	0.506	5.1585
0.088	-0.622	-0.593	-0.3400	0.974	0.179	0.200	7.6121
0.575	0.828	0.799	1.3190	0.988	0.166	0.177	14.5810
0.605	0.783	0.745	1.3527	0.994	0.202	0.209	34.5740
0.644	0.741	0.700	1.4508	1.000	0.000	0.000	35.0000
0.650	0.910	0.861	1.8218	_	_	_	_

Таблица 10. Эффективные заряды в системе Hg-Na («старые» [49] и новые)

Таблица 11. Пересчет данных [2, 49] для системы Hg—K при 250 °C

V	Электросопро- тивление	Термодинамический множитель		
X_{K}	ρ [43]	TF ₁ [49]	ТF ₂ по [20]	
0.0	119.4	1	1.000	
0.05	150.7	_	3.21	
0.1	166.0	4.60	7.04	
0.2	182.0	9.20	10.80	
0.3	202.1	11.70	10.71	
0.4	226.7	_	8.37	
0.5	242.5	4.51	5.24	
0.6	237.0	2.14	2.43	
0.7	205.8	1.72	0.666	
0.8	154.1	1.41	0.146	
0.9	92.5	1	0.549	
0.95	59.9	1	0.844	
1.0	25.1	1	1.000	

зависимости z^* в системах Na-Hg и Hg-K аналогичны.

Далее, при 250 °C: $V_1 = 15.44$ и $V_2 = 49.92$ см³/моль [48], $\rho_1 = 120.6$ и $\rho_2 = 25.35$ мкОм/см [47]. Считаем по (14):

$$ln\bigg[\theta_{Hg}^{K}\frac{2\times25.35\times49.92}{120.6\times15.44}\bigg] = -1.6108,\ \theta_{Hg}^{K} = 0.1469.$$

 $\left[\theta_{\rm Hg}^{\rm K}\right]FEM=(1/49.92/2\times15.44)^{2/3}=0.2881.$ Отсюда $g_{\rm K}/g_{\rm Hg}=(0.14695/0.2881)^{1/2}=0.7142$ и $b_{\rm K}/b_{\rm Hg}==1/0.7142^2=1.9605.$

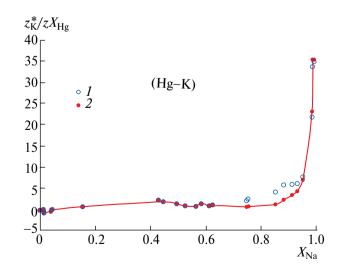
Проверка сшиваемости данных для треугольника Hg-Na-K. Выше приведены значения $g_{\rm Na}/g_{\rm K}=1.698$ при 110 °C, $g_{\rm Na}/g_{\rm Hg}=1.2415$ при 250 °C и $g_{\rm K}/g_{\rm Hg}=0.7142$ при 250 °C. Отсюда $A=(1/1.698)\times1.2415/0.7142=1.024$. Сшиваемость очень хорошая. Второй способ проверки дает:

$$I_{\rm K}^{\rm Na} + I_{\rm Na}^{\rm Hg} + I_{\rm Hg}^{\rm K} =$$

= -0.301 + 1.953 - 1.6108 = 0.041.

Этот результат также выглядит хорошо.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


Хорошая сшиваемость треугольника Hg—Na—K позволяет сделать следующие выводы: 1) растворы трех исследованных систем ведут себя как моногенные; 2) подтверждается трактовка сечений рассеяния электронов на ионах компонентов как парциальных величин по отношению к среднему сечению рассеяния на частицах раствора; 3) не видно признаков комплексообразования в растворах. Плохая сшиваемость треугольника K—Na—Cs связана

	* *	-					
X_{K}	$z_{\mathrm{K}}^{*}[49]$	z_{K}^{*}	$z_{\rm K}^*/\bar{z}X_{\rm Hg}$	X_{K}	$z_{\mathrm{K}}^{*}[49]$	z_{K}^{*}	$z_{\rm K}^*/\overline{z}X_{\rm Hg}$
0	-0.7731	-0.7731	-0.3866	0.63	0.4229	0.3951	0.7795
0.013	-0.4555	-0.5856	-0.2986	0.755	0.5646	0.1251	0.4102
0.015	-1.3133	-1.7825	-0.9116	0.76	0.6947	0.1440	0.4839
0.042	-0.6387	-1.1119	-0.5928	0.86	0.6349	0.1575	0.9870
0.045	-0.3608	-0.6269	-0.3358	0.89	0.6921	0.2549	2.0880
0.16	0.6195	0.7224	0.4674	0.92	0.4983	0.2769	3.2050
0.45	1.3689	1.4135	1.6580	0.94	0.3766	0.2721	4.2790
0.5	0.8200	0.8761	1.1681	0.96	0.3154	0.2848	6.847
0.53	0.4434	0.4809	0.6961	0.994	0.1316	0.1388	23.00
0.57	0.3470	0.3749	0.6096	0.997	0.1014	0.1064	35.36
0.59	0.6880	0.7265	1.2566	1	0.0000	0.0000	35.36
0.62	0.3218	0.3138	0.5985	_	_	_	_

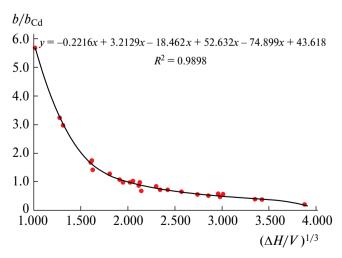

Таблица 12. Эффективные заряды в системе Hg-K («старые» [49] и новые)

Таблица 13. Значения факторов *g* и *b*

Me	$g/g_{ m Cd}$	$b/b_{ m Cd}$	b				
Na	0.956	1.094	0.37				
K	0.556	3.235	1.10				
Cs	0.35-0.42	8.16-5.67	2.77-1.93				

Рис. 6. Зависимость от состава величины $z^*_{\rm K}/zX_{\rm Hg}$ при 250 °C: I-[49], 2- настоящая работа.

Рис. 7. Зависимость фактора b от теплоты испарения единицы объема металла $\Delta H/V$, кДж/см³.

с тем, что точки инверсии находятся вблизи концентраций 50 ат. % и ошибки расчета интегралов велики. В настоящей работе получены значения факторов g и b щелочных металлов (табл. 13).

На рис. 7 показана зависимость фактора $b/b_{\rm Cd}$ от теплоты испарения единицы объема металла (в кДж/см³). Если приведенная выше трактовка фактора верна, то максимальное значение b у Сs должно быть близко к 2, и в этом случае $2/b_{\rm Cd} \approx 5.8$, так что $b_{\rm Cd} \approx 0.34$. Следовательно, для расчета абсолютных значений b все отношения $b/b_{\rm Cd}$ из табл. 2 следует умножить на 0.34.

Из таблицы выше видно, что только у Сs и К абсолютная величина фактора 1 < b < 2, а у остальных b < 0.6. Следовательно, у большинства металлов длина свободного пробега гораздо меньше, чем дает теория Друде—Зоммерфельда ($L = bL_{\rm DS}$). Соответственно фактические сечения рассеяния $\sigma = \sigma_{\rm DS}/b$, так что $\sigma > \sigma_{\rm DS}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Белащенко Д.К.* Явления переноса в жидких металлах и полупроводниках. М.: Атомиздат, 1970.
- 2. Белащенко Д.К. Исследование расплавов методом электропереноса. М.: Атомиздат, 1974.
- 3. *Belashchenko D.K.* On the Relationship between Electrical Conductivity and Electromigration in Liquid Metals.
 - DOI: 10.20944/preprints202305.1446.v1
- Belashchenko D.K. // Dynamics. 2023. V. 3. P. 405–424. https://doi.org/10.3390/
- 5. *Mott N.F.* Electrons in Disordered Structures. 1967.
- 6. Mott N.F. // Phil. Mag. 1966. V. 13. P. 989-1014.
- 7. Белащенко Д.К., Гущина Е.И. // ФММ. 1970. Т. 30. № 2. С. 295.
- 8. Verhoeven J. // Metall. Rev. 1963. V. 8. P. 311.
- 9. Faber T.E., Ziman J.M. // Phil. Mag. 1965. V. 11. P. 153.
- 10. Faber T.E. Private communication.
- 11. *Belashchenko D.K.* The Use of Electrotransport for the Study of Metallic and Semiconducting Melts // Int. Conf. "Atomic Transport in Solids and Liquids". Ed. A. Lodding and T. Lagerwall. 1971. P. 173.
- 12. Михайлов В.А., Богданова Д.Д. Электроперенос в жидких металлах. Новосибирск: Наука, 1978.

- 13. *Christman J.R., Huntington H.B.* // Phys. Rev. 1965. V. A1339. P. 83
- 14. Christman J.R. // Phys. Rev. 1967. V. 153. P. 217, 225.
- Waseda Y. The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids. N.Y.: Mc-Graw-Hill, 1980.
- 16. *Аксенова Л.И.*, *Белащенко Д.К.* // ТВТ. 1971. Т. 9. № 4. С. 722—730.
- 17. *Hennephof J., Van Der Lugt W., Wright G.W.* // Physica, 1971. Vol. 52. Pp. 279–289.
- 18. Быстров П.И., Каган Д.Н., Кречетова Г.А., Шпильрайн Э.Э. Жидкометаллические теплоносители тепловых труб и энергетических установок. М.: Наука, 1988.
- 19. *Cafasso F.A.*, *Khanna V.M.*, *Feder H.M.* // Adv. in Phys. 1967. V. 16. P. 535.
- 20. *Hultgren R., Desai P.D., Hawkins D.T. et al.* Selected Values of the Thermodynamic Properties of the Elements. ASM. Metal Park, OH, 1973.
- Epstein S.G., Dickey J.M. // Phys. Rev. B. 1970. V. 1. P. 2442.
- Larson S., Roxberg C., Lodding A. Atomic Transport in Solids and Liquids, Proceedings of the Europhysics Conference. Marstrand, Sweden, 15–19 June 1970. Eds Lodding A., Lagerwall T. Tübingen, 1971; ISBN 3921015006/9783921015001.
- 23. Huijben M.J., van der Lugt W., Reimert W.A.M., De Hosson J.Th.M. // Physica B. 1979. V. 97. P.338.
- 24. Feitsma P.D., Hallers J.J., van der Lugt W., Lee T. // Physika. 1978. B+C. V. 93. № 1. P. 47.
- 25. *Malan R.C.* Doctoral Thesis. Gujarat Technological University. Ahmedabad. 2021. № 149997674003.
- 26. *Neale F.E., Cusack N.E.* // J. Phys. F: Met. Phys. 1982. V. 12. P. 2839.
- 27. *Ichikawa K., Granstaff S.M., Jr., Thompson J.C.* // J. Chem. Phys. 1974. V. 61. P. 4059.
- 28. Yokokawa T., Kleppa O. // J. Chem. Phys. 1964. V. 40. P. 46.
- 29. *Yih T-S.*, *Thompson J.C.* // J. Phys. F: Met. Phys. 1982. V. 12. P. 1625.
- 30. Аксенова Л.И., Белащенко Д.К. // ТВТ. 1971. Т. 9. № 6. С. 1159.
- 31. *Wax J.-F., Jakse N.* // J. Non-Cryst. Solids. 2007. V. 353. P. 3535.
- 32. *Alblas B.P., van der Lugt W., Mensies O., van Dijk C. //* Physica. 1981. V. 16B. P. 22.
- 33. Hennephof J., van der Lugt W., Wright, G.W., Mariën T. // Physica. 1972. V. 61. P. 146.
- 34. Alblas B.P., van der Lugt W., Visser E.G., De Hosson J.Th.M. // Physica B+C. 1982. V. 114. Issue 1. P. 59.

- 35. Dubinin N.E., Trefilova T.V., Yuryev A.A. et al. // Int. J. Fluid Mechanics Research. 2000. V. 27. Issue 2–4. P. 306.
- 36. Waseda Y., Tamaki Sh. // Science Reports of the Research Institutes, Tohoku University. Ser. A. Physics, Chemistry and Metallurgy. 1979. V. 28. № 1. P. 134.
- 37. *Schwarz K*. Elektromotorische Wanderung in flüssigen und festen Metallen. Leipzig, 1940.
- 38. *Kremann R., Müller R.* Elektromotorische Kräfte, Elektrolyse and Polarization. 2 Teil. Leipzig, 1931; Handb. der allgemeine Chemie. Bd 8. S. 616.
- 39. *Дракин С.И., Сергеева Т.Н., Русакова В.Н.* // Журн. физ. химии. 1961. Т. 35. С. 1125.
- 40. Дракин С.И., Титова Ю.К. // Там же. 1967. Т. 41. С. 625.
- 41. *Packard D.K., Verhoeven J.D.* // Trans. Met. Soc. AIME. 1968. V. 242. P. 1335.
- 42. *Angus J.C.*, *Hucke E.E.* // J. Phys. Chem. 1961. V. 65. P. 1549.

- 43. Müller P. // Metallurgie. 1910. V. 7. P. 730.
- 44. *Mishra A.K., Singh R.N., Rukhaiyar A.K., Sahay B.B.* // Physica Status Solidi A. 1994. V. 144. № 2. P. 335.
- 45. *Adams P.D.* The Electrical resistance of molten metals and alloys. Doctoral Thesis. Univ. London. 1964.
- 46. Морачевский А.Г. // ЖПХ. 2014. Т. 87. № 7. С. 841
- 47. Таблицы физических величин: Справочник / Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976.
- 48. *Арсентьев П.П., Коледов Л.А.* Металлические расплавы и их свойства. М.: Металлургия, 1976.
- Аксенова Л.И., Белащенко Д.К., Менделев В.А. // ФММ. 1972. Т. 33. № 5. С. 997.
- 50. *Itami T., Shimoji M.* // Phil. Mag. 1970. V. 21. № 174. P. 1193.
- Vora A.M. // Int. Lett. Chem. Phys. Astron. 2015.
 V. 54. P. 56.
- 52. Дракин С.И., Голубкова Ю.К., Ушакова Э.П. // Журн. физ. химии. 1960. Т. 34. С. 866.