

УДК 544.15+547.024

ОДНОЭЛЕКТРОННЫЙ ПЕРЕНОС В РЕАКЦИЯХ РАДИКАЛЬНОГО ПРИСОЕДИНЕНИЯ

© 2024 г. О.Б. Томилин^a, *, О.В. Бояркина a , А.В. Князев b , Е.А. Родин a

^аФГБОУ ВО "Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва" 430005 Россия, Саранск

^bНациональный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского 603022 Нижний Новгород, Россия

*e-mail: tomilinob@mail.ru
Поступила в редакцию 16. 10. 2023 г.
После доработки 27. 12. 2023 г.
Принята к публикации 29. 12. 2023 г.

Предложенная гипотеза об изменении спинового состояния двухцентровой двухэлектронной связи реагирующей молекулы под возмущающим действием органического радикала открывает новые возможности уточнения механизма радикального присоединения к олефинам и сопряженным диенам. Изменение спинового состояния молекулы этилена и *s-mpaнс*-бутадиена-1,3 создает предпосылки для реализации одноэлектронного переноса в реакционной системе. Одноэлектронный перенос изменяет распределение эффективных зарядов на атомах реакционной системы, обеспечивая их кулоновское взаимодействие, что позволяет интерпретировать образование конечных продуктов в рамках фундаментального физического взаимодействия — электромагнитного взаимодействия.

Ключевые слова: радикальное присоединение, триплетное состояние, одноэлектронный перенос, кулоновское взаимодействие

DOI: 10.31857/S0044453724080175, EDN: PIYQSR

ВВЕДЕНИЕ

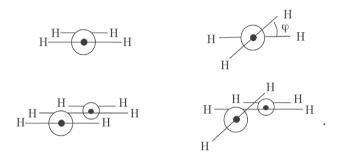
Многочисленные экспериментальные данные (см., например [1, 2]) по радикальному присоединению к алкенам и диенам демонстрируют эффективность синтезов высокофункциональных соединений, как экономичных методов получения целевых продуктов из легкодоступных исходных веществ. Экспериментально установлено, что данные реакции являются региоселективными и экзотермичными. Среди возможных факторов, влияющих на скорость реакций радикального присоединения, указываются прочность образующейся связи, стерические затруднения, электростатические эффекты и стабильность образующихся радикалов [3—5].

Результатом экспериментальных работ стало создание качественного механизма присоединения радикалов к алкенам на стадии зарождения цепи (рис. 1), согласно которому первоначально образуется π -комплекс, представляющий собой ассоциат радикала с двойной связью ненасыщенного соединения (первичный комплекс межмолекулярных столкновений) [6, 7]. Далее в ассоциате происходит взаимодействие атома радикала с каким-то

определенным атомом углерода двойной связи, при этом образуется неустойчивое σ -переходное состояние с зарождением новой связи, которое трансформируется в конечный продукт радикального присоединения.

Трансформация π -комплекса предполагает реализацию радикального механизма — взаимодействия атомов с максимальной спиновой плотностью, исходя из индекса свободной валентности. Однако это взаимодействие противоречит фундаментальному физическому взаимодействию кулоновскому взаимодействию. Данное обстоятельство определяет неуниверсальность использования спиновой плотности на атомах в качестве индекса реакционной способности. Согласно [8, 9], реакционная способность и спиновая плотность на атомах в ряде реакций не коррелируют друг с другом. Кроме того, остается неясным, каким-образом происходит распаривание π-электронов двойной связи алкена для последующего взаимодействия с неспаренным электроном радикала.

Более детальное рассмотрение механизма вза-имодействия радикала с двойной связью алкена


Рис. 1. Качественный механизм радикального присоединения к алкенам.

возможно только с использованием тех или иных квантово-механических моделей, описывающих электронную структуру π -комплекса и его последующую эволюцию. Постановка проблемы механизма эволюции структуры π -комплекса также инициируется значительным циклом экспериментальных работ по термической *цис-транс*-изомеризации алкенов [10—13]. Логичным механизмом термической *цис-транс*-изомеризации в газовой фазе является предположение о торсионном вращении метиленовых групп под влиянием внешних воздействий, которое должно сопровождаться изменением состояния π -электронной связи.

Для этилена плоской структуры симметрии $D_{2\mathrm{h}}$ (все атомы располагаются в плоскости Y0Z, ось Z проходит через два атома углерода) является следующий порядок расположения электронных состояний с учетом π - π^* -возбуждения электрона: основное синглетное $^1A_{\mathrm{g}}$, низшие возбужденные триплетное $^3B_{1\mathrm{u}}$ и синглетное $^1B_{1\mathrm{u}}$ состояния [14].

Особенностью возбужденного синглетного состояния ${}^{1}B_{10}$ является близкое значение его энергии с энергиями ридберговских s-, p- и d-состояний [15], что может приводить к их искусственному смешиванию. В связи с этим использование метода многоконфигурационного взаимодействия, количественного описания электронной корреляции, учет динамической поляризации σ-углеродной связи позволяют корректно установить его валентную природу [16, 17]. Так, например, определение пространственной протяженности волновой функции ф электронных состояний, как математического ожидания одноэлектронной матрицы плотности $<\phi|\Sigma_i x_i^2|\phi>$, показало увеличение данной величины (\approx 18) для состояния $^{1}B_{1u}$, по сравнению с основным $^1\mathrm{A}_\mathrm{g}$ и первым возбужденным триплетным ${}^3B_{1\mathrm{u}}$ состояниями (\approx 12). Для ридберговского состояния $2{}^1B_{1\mathrm{u}}$ ($3d\pi$) величина математического ожидания одноэлектронной матрицы плотности $\langle \phi | \Sigma_i x_i^2 | \phi \rangle$ равна ≈ 90 , что свидетельствует о существенно большей диффузности.

Согласно исследованиям Р. Малликена [14], вращение метиленовой группы относительно С–С-связи приводит к пересечению основного синглетного ${}^1A_{\rm g}$ и низшего триплетного ${}^3B_{\rm 1u}$ электронных состояний. Частично "скрученный" этилен имеет симметрию D_2 (1A и 3B_1 — основное синглетное и низшее триплетное состояния, соответственно), который при дальнейшем повороте СН $_2$ -группы переходит в "перпендикулярный" этилен симметрии $D_{\rm 2d}$ (состояния 1B_1 и 3A_2 соответственно) с ортогональным расположением метиленовых групп друг относительно друга. Для этилена симметрии $D_{\rm 2d}$ (ϕ =90°) триплетное состояние 3A_2 становится более стабильным, чем синглетное состояние 1B_1 . Ниже показан положительный поворот атомов водорода метиленовой группы против часовой стрелки на угол ϕ :

Найденный результат открывает возможность реализации триплетного пути по поверхности потенциальной энергии (ППЭ) при меньших значениях энергии в отличие от синглетного пути, активационный барьер которого равен 50—65 ккал/моль при термической *цис-транс*-изомеризации алкенов в газовой фазе [10].

Таким образом, возникают два альтернативных механизма термической *цис-транс*-изомеризации [18]: синглетный, когда не происходит изменения спинового состояния молекулы алкена при прохождении потенциального барьера, и триплетный, когда при взаимодействии $\Pi\Pi$ синглетных и триплетных состояний в местах их пересечения происходит изменение спинового состояния в результате распаривания π -электронов.

Триплетный механизм важен для фотосенси-билизированной *цис-транс*-изомеризации [19]. Кроме того, термическая *цис-транс*-изомеризация алкенов катализируется парамагнитными молекулами и атомами, такими как O_2 , NO, свободные радикалы и др. [11—13]. Интерпретация этого результата заключается в том, что в присутствии парамагнитных веществ усиливается спин-орбитальное возмущение электронов, происходит смешивание триплетных и синглетных состояний молекулы.

В [20] показано для различных бирадикалов, что возникающее в результате спин-орбитального вза-имодействия синглет-триплетное "смешивание" состояний должно компенсироваться изменением орбитального углового момента электронов.

Каталитическое влияние парамагнитных молекул и свободных радикалов на *цис-транс*-изомеризацию алкенов может быть рассмотрено в рамках теории спинового катализа [13]. Теория спинового катализа включает в себя две составляющие: статическую, изучающую спиновые волновые функции и спиновые состояния, и динамическую, исследующую эволюция спиновых состояний в процессе химических взаимодействий.

Формально каталитическая *цис-транс*-изомеризация под действием свободного радикала представляет собой эволюцию трехспиновой системы триады, в которой двумя радикалами являются

Квартетные Q' и дублетные D' состояния различаются проекцией спина электронов алкена и радикала на направление внешнего магнитного поля, состояния Q и D — фазой прецессии спина. В дублетном состоянии D противоположно направленные спины π -электронов алкена прецессируют в противофазе, в квартетном состоянии Q — синфазно.

Два дублетных состояния D соответствуют синглетному состоянию π -электронной системы двойной связи исходного и конечного продуктов *цис-транс*-изомеризации, которые в результате обменного взаимодействия трансформируются в состояния D'. В этом случае эволюция спинового состояния алкена при изменении угла ϕ от 0° до 180° в присутствии катализатора — парамагнитной частицы имеет вид $D \rightarrow D' \rightarrow D$.

Торсионное вращение метиленовой группы в *s-mpaнc*-бутадиене-1,3 не приводит к изомеризации молекулы относительно двойной связи, как в случае алкенов. Наиболее подробно изучены синглетные и триплетные возбужденные электронные состояния плоского бутадиена-1,3 [21]. В [22] исследованы ППЭ возбужденных состояний

метиленовые группы молекулы этилена с антипараллельными спинами π -электронов, третьим радикалом является парамагнитная частица с неспаренным электроном: $H_2C\uparrow - \downarrow CHY + \uparrow X$. В этой модели триплетное состояние π -электронной системы двойной связи алкена генерируется торсионным термическим вращением метиленовой группы вокруг C-C связи, которое ускоряется за счет обменного взаимодействия с неспаренным электроном катализатора X.

Полное число возможных спиновых состояний в триаде равно 8. Обменное взаимодействие приводит к расщеплению этих состояний на две группы: четыре квартетных состояния Q и Q' с полным спином S=3/2 и спиновыми проекциями S_Z = $\pm 3/2$, $\pm 1/2$ и четыре дублетных состояния D и D' с полным спином каждого из них S = 1/2 и проекциями S_Z = $\pm 1/2$:

$$\uparrow X \qquad \downarrow X$$

$$H_2C \uparrow - \uparrow CHY \qquad H_2C \downarrow - \downarrow CHY$$

$$Q' \qquad \qquad \downarrow X \qquad \uparrow X$$

$$H_2C \uparrow - \uparrow CHY \qquad H_2C \downarrow - \downarrow CHY$$

$$D'$$

s-транс-бутадиена-1,3 в зависимости от торсионного вращения метиленовой группы и удлинения двойной связи. Было показано, что такая геометрическая релаксация энергетически выгодна для низшего триплетного состояния *s-транс*-бутадиена-1,3. Установлено, что основной вклад в низшие синглетное и триплетное состояния *s-транс*-бутадиена-1,3 при ортогональном расположении метиленовой группы вносит конфигурация основного состояния аллильного радикала.

В связи с вышеизложенным можно предположить, что закономерности радикального присоединения к двойной связи молекулы определяются эволюцией квартетных спиновых состояний, которая может иметь два альтернативных варианта: либо распад "квартетных триад", либо их трансформация за счет "посторонних" химических реакций [13].

В настоящей статье исследована динамика трансформации квартетных спиновых состояний реагирующих систем этилен—радикал и s-mpanc-бутадиен-1,3—радикал при пошаговом изменении координаты реакции в сечении ППЭ. В качестве радикала рассматривался радикал $C1_3C$.

образующийся на стадии инициирования. Радикальное присоединение полигалогенметанов к алкенам и сопряженным диенам происходит термически в присутствии инициаторов, образующих радикалы, а именно: органических перекисей, карбонилов металлов и окислительно-восстановительных систем [3—5, 23, 24]. Температура реакции достигает 100 °С и выше.

На стадии зарождения цепи взаимодействия в реагирующих системах этилен—радикал и *s-mpaнс*-бутадиен-1,3—радикал могут быть представлены реакциями:

$$\dot{C}Cl_3 + CH_2 == CH_2 \rightarrow Cl_3CCH_2\dot{C}H_2 \qquad (1)$$

$$\dot{C}Cl_3 + \longrightarrow Cl_3C$$

$$A$$
(2)

где А – радикальный фрагмент аллильного типа.

При обычных температурах бутадиен-1,3 находится главным образом (> 96%) в более стабильной трансоидной конформации. Константы скорости присоединения свободных радикалов к бутадиену значительно выше, чем при присоединении к этилену, что объясняется резонансной стабилизацией образующегося радикального фрагмента аллильного типа A (2) [3].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оптимизация геометрии электронных состояний систем этилен — радикал и s-mpaнс-бутадиен-1,3 — радикал проводилась неограниченным вариантом метода теории функционала плотности при использовании обменно-корреляционного функционала B3LYP и базиса 6-311G(2d,2p). Как было указано выше, первое возбужденное триплетное состояние этилена, как и основное синглетное состояние, не имеет вклада от ридберговских состояний, поэтому дополнительные диффузные функции не были добавлены в базис расчета.

Для вычислений энергий диссоциации основных дублетных состояний комплексов межмолекулярных столкновений этилена и *s-mpaнс*-бутадиена-1,3 с трихлорметильным радикалом использовался неограниченный по спину метод Хартри—Фока и корреляционно-согласованный базисный набор Даннинга aug-cc-*pVDZ*. Электронная корреляция учитывалась в рамках локального варианта метода связанных кластеров с учетом одно- и двукратных возбуждений и неитерационной поправки на трехкратные возбуждения DLPNO-CCSD(T) (NormalPNO). Расчеты проводились в программном пакете Orca v. 4.0.1.2 [25].

Для всех расчетов использовались критерии сходимости для ССП и оптимизации геометрии, определенные как VeryTightSCF и VeryTightOpt.

Метод DLPNO-CCSD(T) при изучении межмолекулярных нековалентных взаимодействий различных систем сравним по точности с методом CCSD(T) [26]. Успешное применение данного метода для изучения систем с открытой оболочкой представлено в [27]. Применение метода DFT/ B3LYP для изучения электронного строения бирадикалов [28] и механизмов реакций с участием триплетных состояний молекул [29, 30] показало удовлетворительные результаты.

Рассчитанные неограниченным вариантом метода теории функционала плотности DFT/B3LYP с указанным базисом геометрические параметры для молекул плоского этилена (D_{2h}) r(C=C)=1.324 Å, <CCH=121.7° и s-mpahc-бутадиена-1,3 (C_{2h}) r(C=C)=1.334 Å, r(C-C)=1.455 Å, <CCH=124.3° удовлетворительно согласуются с экспериментальными данными [31]: 1.330 Å, 121.5° и 1.338 Å, 1.454 Å, 123.6° соответственно.

Согласно проведенным расчетам, разность между вычисленными полными энергиями E плоского этилена (D_{2h}) в основном синглетном состоянии $^1A_{\rm g}$ и "перпендикулярного" этилена (D_{2d}) в основном триплетном состоянии 3A_2 , как $\Delta E = E(^3A_2) - E(^1A_{\rm g})$, составила 2.8 эВ без учета энергии нулевых колебаний (ZPE) и 2.65 эВ с добавленным значением ZPE. Полученные значения удовлетворительно согласуются с рассчитанной величиной ΔE методом CCSD(T) с базисом сс-pVnZ (n=D,T,Q,5) [15], и экспериментально определенной величиной торсионного барьера этилена [32]. В целом отметим, что абсолютная ошибка в вычисленной энергии перехода этилена не превышает 0.2 эВ.

Исследование сечений ППЭ взаимодействия трихлорметильного радикала с молекулами этилена и *s-mpaнc*-бутадиена-1,3 в различных электронных состояниях при пошаговом изменении координаты реакции проводилось в зависимости от торсионного угла ф вращения метиленовых групп молекул, валентного угла θ между углеродными атомами этилена (s-mpaнc-бутадиена-1,3) и радикала Cl_2C и расстояния R между взаимодействующими атомами молекул и радикала. Интервалы изменения каждой координаты реакции указаны в разделе обсуждения результатов. Величина изменения валентного угла при построении сечения ППЭ составила $\Delta\theta=5^{\circ}$, торсионного угла $\Delta\phi=1^{\circ}$, расстояния между взаимодействующими атомами молекулы и радикала ΔR =0.01 Å.

Для построения внутренней координаты реакции (IRC) в масс-взвешенных координатах использовался алгоритм Морокума, реализованный в программе Огса. Кроме того, исследование ППЭ проводилось путем сканирования сечения ППЭ

вдоль координаты реакции. В каждой точке фиксированного значения координаты реакции проводилась оптимизация геометрии реакционной системы, определялись полная энергия системы E_{tot} , величины спиновой плотности \mathbf{p}_i и эффективных зарядов δ_i на атомах, вычисленные по Малликену. Для фиксированных значений валентного θ и торсионного ϕ углов, длин связей C-Cl использовалась constrained оптимизация.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

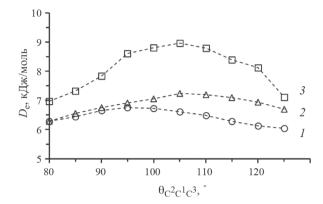
Рассмотрим первичные комплексы межмолекулярных столкновений радикала Cl₃C· с молекулами этилена (D_{2h}) и *s-mpaнc*-бутадиена-1,3(C_{2h}). Основным электронным состоянием данных комплексов, как и в случае иис-транс-изомеризации алкенов, является дублетное состояние D, возбужденными квартетными состояниями -Q и Q' (см.выше). Согласно [33] радикал Cl₃C· имеет форму пирамиды с углом ClCCl ≈117°. Основное электронное состояние радикала представляет собой дублет ${}^{2}A_{1}$ (C_{3v}) , волновая функция которого является симметричной относительно всех операций симметрии группы C_{3v} . В комплексе межмолекулярных столкновений радикала с плоским этиленом (D_{2b}) симметрия системы понижается до точечной группы симметрии $C_{\rm s}$. Плоскость симметрии σ в комплексе $C_2H_4(D_{2h})$ -С Cl_3 симметрии C_s совпадает с одной из плоскостей симметрии группы C_{3v} радикала и проходит через одну из трех связей C-Cl. Обозначим основное дублетное состояние радикала как D_0 .

Волновая функция основного электронного состояния плоского этилена $^1A_{\rm g}$ ($D_{\rm 2h}$) симметрична относительно плоскости σ ($C_{\rm s}$), совпадающей с $\sigma^{\rm xz}$ ($D_{\rm 2h}$) при условии расположения координатных осей согласно [14]. Таким образом, основное дублетное состояние комплекса $C_{\rm 2}H_{\rm 4}$ -CCl $_{\rm 3}$ можно представить как $^1A_{\rm g}$ · $D_{\rm 0}$ ($^2A'$ в точечной группе симметрии $C_{\rm s}$). Волновая функция возбужденного триплетного состоянии $^3B_{\rm 1u}$ этилена ($D_{\rm 2h}$) также симметрична относительно плоскости σ ($C_{\rm s}$), поэтому квартетное состояние комплекса $C_{\rm 2}H_{\rm 4}$ ($D_{\rm 2h}$)-CCl $_{\rm 3}$ симметрии $C_{\rm s}$ имеет вид $^4A'$ ($^3B_{\rm 1u}$ · $D_{\rm 0}$).

В "перпендикулярном" этилене (D_{2d}) волновые функции синглетного 1B_1 и триплетного 3A_2 состояний антисимметричны относительно плоскости σ (C_s), поэтому в комплексе $C_2H_4(D_{2d})$ - CCl_3 симметрии C_s дублетное состояние имеет симметрию $^2A''$ ($^1B_1\cdot D_0$), квартетное $-^4A''$ ($^3A_2\cdot D_0$). В комплексах столкновений $C_2H_4(D_2)$ - CCl_3 ($0^\circ < \varphi < 90^\circ$) общей симметрии C_1 дублетные и квартетные состояния могут быть обозначены как 2A ($^1A\cdot D_0$) и 4A ($^3B_1\cdot D_0$) соответственно.

Возможны два принципиальных вида пространственной координации радикала Cl_3C · по отношению к двойной углеродной связи молекулы в комплексах $\text{C}_2\text{H}_4(D_{2\text{h}})$ - CCl_3 и s-mpahc- $\text{C}_4\text{H}_6(C_{2\text{h}})$ - CCl_3 :

Схема 3


$$\begin{array}{c} \text{Cl}_{3}\overset{\bullet}{\text{C}}^{3} \\ \text{Rc}^{1}\overset{\circ}{\text{C}}^{3}\overset{\bullet}{\text{I}} & \theta_{\text{C}}\overset{\circ}{\text{C}}^{1}\overset{\circ}{\text{C}}^{3} \\ \text{H}\overset{\bullet}{\text{C}}^{1}\overset{\bullet}{\underline{\qquad}} & \text{C}^{2}\overset{\cdot}{\text{H}} \\ \text{H} & \text{C}^{1}\overset{\bullet}{\underline{\qquad}} & \text{C}^{2}\overset{\cdot}{\text{H}} \end{array},$$

$$Cl_3\overset{\bullet}{C}^3 - \cdots - \overset{H}{H} C^1 \overset{\frown}{C}^2 \overset{H}{Y}$$
, $Y = H$, $H C \overset{\frown}{C} \overset{H}{H}$

Исследуем устойчивость комплексов $C_2H_4(D_{2h})$ - CCl_3 и s-mpahc- $C_4H_6(C_{2h})$ - CCl_3 в основном состоянии. Во-первых, неограниченным вариантом метода функционала плотности было проведено сканирование $\Pi\Pi$ для комплексов C_2H_4 - CCl_3 и s-mpahc- C_4H_6 - CCl_3 в основном состоянии 1A_g : D_0 (состояние 2A ' в точечной группе симметрии C_s и 2A в точечной группе симметрии C_1 соответственно) при изменении координаты реакции $R_C^1_C^3$ =5-3 Å для каждого фиксированного значения $\theta_C^2_C^1_C^3$ = 80° - 180° ($\Delta\theta_C^2_C^1_C^3$ = 5°). Величина $\theta_C^2_C^1_C^3$ = 80° ± 3° соответствует положению атома C^3 радикала над центром масс молекулы этилена.

Во-вторых, для каждой кривой ППЭ методом UHF-DLPNO-CCSD(T) была определена энергия диссоциации, аналогично определенной в [34] для комплекса этилена и кислорода в основном состоянии, как $D_{\rm e}=E(5~{\rm \AA})-E(R_{\rm e})$, где E — значения полной энергии комплекса при $R_{\rm C}{}^1{}_{\rm C}{}^3=5~{\rm \AA}$ и $R_{\rm e}$ — значении $R_{\rm C}{}^1{}_{\rm C}{}^3$ в комплексе с наименьшей полной энергией в сечении ППЭ. Величины $R_{\rm e}$ в комплексах при различных значениях θ составили $3.6-4~{\rm \AA}$.

Полученные результаты величины $D_{\rm e}$ основного состояния $^{1}A_{\rm g}\cdot D_{\rm 0}$ комплекса ${\rm C_2H_4\text{-}CCl_3}$ представлены на рис. 2. Согласно проведенным расчетам, величины $D_{\rm e}$ основного состояния $^{1}A_{\rm g}\cdot D_{\rm 0}$ комплекса ${\rm C_2H_4\text{-}CCl_3}$ при увеличении валентного угла ${\rm \theta_C}^2{\rm C}^1{\rm C}^3$ от 80° до 95° для заслоненной и до 105° для анти-конформации увеличиваются от 6.3 кДж/моль

Рис. 2. Энергия диссоциации $D_{\rm e}$ комплекса столкновений ${\rm C_2H_4\text{-}CCl_3}$ в основном состоянии ${}^1A_{\rm g}\cdot D_0$ для заслоненной (*I*) и анти-конформации (*2*), в основном состоянии ${}^1A\cdot D_0$ при ${\rm \phi}{=}42^{\circ}$ (*3*) в зависимости от угла ${\rm \theta_C}^2_{\rm C}^{-1}_{\rm C}^3$.

 $(R_{\rm e}=3.82~{\rm \AA})$ до 6.7 (3.67 Å) и до 7.2 кДж/моль (3.63 Å) соответственно. При дальнейшем увеличении угла $\theta_{\rm C}{}^2{}_{\rm C}{}_{\rm C}{}^3$ величина $D_{\rm e}$ уменьшается и при значении $\theta_{\rm C}{}^2{}_{\rm C}{}_{\rm C}{}^3=180^\circ$ составляет 4.9 кДж/моль (3.94 Å).

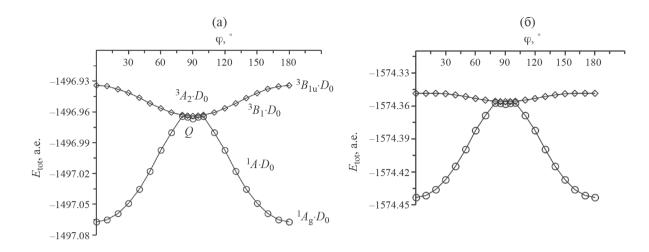
Таким образом, большее значение энергии диссоциации комплекса $\mathrm{C_2H_4}(D_{2\mathrm{h}})$ - $\mathrm{CCl_3}$ обусловлено преимущественной реализацией тригональной модели 1 пространственной координации радикала по отношению к двойной связи. Изменение конформации трихлорметильного радикала по отношению к $\mathrm{C^1H_2}$ -группе несущественно влияет на изменение устойчивости комплекса.

Полученные значения энергии диссоциации удовлетворительно согласуются с энергией взаимодействия комплекса этилена с ацетиленом и димера этилена, вычисленных методом CCSD(T) с базисом aug-cc-pVDZ-DK [35]. Кроме того, небольшая устойчивость комплекса $C_2H_4(D_{2h})$ - CCl_3 соответствует исследованиям комплекса плоского этилена с триплетным кислородом [34], проведенных ограниченным по спину методом Хартри—Фока с учетом конфигурационного взаимодействия в базисе 6-31G(d). В основном состоянии молекулы этилена и кислорода образуют малоустойчивый комплекс межмолекулярных столкновений, электронные характеристики которого соответствуют таковым для отдельных молекул.

Также была определена величина $D_{\rm e}$ для основного состояния $^1A\cdot D_0$ (2A в точечной группе симметрии C_1) комплекса $C_2H_4(D_2)$ - CCl_3 при торсионном угле вращения ϕ =42°. Как показано на рис. 2 (кривая 3), торсионное вращение метиленовой группы этилена в комплексе столкновений C_2H_4 - CCl_3 приводит к увеличению энергии диссоциации $D_{\rm e}$, которая имеет максимальное значение 9 кДж/моль при $\theta_C^2C_1^1C_3^3$ =105° и $R_{\rm e}$ =3.49 Å.

В рассмотренных комплексах C_2H_4 - CCl_3 плотность неспаренного электрона p_i сконцентрирована на атоме C^3 (0.76 a.e.) и атомах хлора (0.08 a.e.) трихлорметильного радикала, что соответствует распределению спиновой плотности в отдельных молекуле и радикале.

Аналогичные результаты были получены для основного состояния $^{1}A_{\rm g}\cdot D_{0}$ комплекса s-mpanc- ${\rm C_4H_6}(C_{\rm 2h})$ - ${\rm CCl_3}$ (^{2}A в точечной группе симметрии ${\rm C_1}$). В данном комплексе при изменении валентного угла величина $D_{\rm e}$ достигает максимального значения 9.1 кДж/моль при ${\rm \theta_{C}}^2{\rm C_1}^1{\rm C_3}^3$ = 100° и $R_{\rm e}$ =3.6 Å. При вращении метиленовой группы s-mpanc-бутадиена-1,3 энергия диссоциации комплекса увеличивается, например, при значении угла вращения ${\rm \phi}$ =31° (состояние ${}^{1}A\cdot D_{\rm 0}$) величина $D_{\rm e}$ имеет наибольшее значение 10.2 кДж/моль при ${\rm \theta_{C}}^2{\rm C_1}^3$ = 105° и $R_{\rm e}$ =3.59 Å.


Рассмотрим зависимости полной энергии $E_{\text{tot.}}$ дублетных и квартетных электронных состояний комплексов столкновений C_2H_4 - CCl_3 и *s-mpaнc*- C_4H_6 - CCl_3 от торсионного угла ϕ при $R_C^{\ l}_C^{\ 3}$ =3.6 Å (рис. 3).

Степень чистоты электронных состояний комплексов столкновений C_2H_4 - CCl_3 и *s-транс*- C_4H_6 - CCl_3 , как величины среднего значения оператора квадрата спина электрона, представлена в табл. 1.

Из данных табл. 1 видно, что для дублетных состояний при значении торсионного угла ϕ >60° комплексов C_2H_4 - CCl_3 и *s-mpaнc*- C_4H_6 - CCl_3 величина =0.75 увеличивается. Это означает, что в рамках используемого неограниченного варианта метода функционала плотности происходит искусственное смешивание квазивырожденнных дублетных D и квартетных Q состояний (см. выше) при изменении фазы прецессии спинов π -электронов двойной связи этилена (*s-mpaнc*-бутадиена-1,3) и их распаривании. Дальнейшее существенное увеличение значений до 1.7—1.8 свидетельствует об уменьшении полной энергии квартетных состояний Q, по сравнению с дублетными состояниями.

Отметим также полное отсутствие спинового "загрязнения" для квартетных состояний Q': \approx 3.75. Как видно из рис. 3, состояния Q и Q' комплексов C_2H_4 - CCl_3 и s-mpanc- C_4H_6 - CCl_3 являются изоэнергетическими (разность в значениях полной энергии не превышает абсолютную ошибку $0.2 \Rightarrow B$) при значениях торсионного угла 80° – 100° , что подтверждает их квартетную природу.

В отличие от процессов изомеризации алкенов, катализируемой радикалами, в реакциях присоединения радикал является участником химического процесса. В связи с этим были построены сечения ППЭ основных дублетных D- и квартетных Q- состояний комплексов C_2H_4 - CCl_3 и s-mpahc- C_4H_6 - CCl_3 с различными значениями φ при уменьшении координаты реакции $R_C^{1}_C^{3}$ от значения R_e

Рис. 3. Энергии E_{tot} дублетных и квартетных электронных состояний комплексов межмолекулярных столкновений C_2H_4 -CCl₃ (a) и *s-mpanc*- C_4H_6 -CCl₃ (б) в зависимости от торсионного угла ϕ при $R_C^{-1}_C^{-3}$ =3.6 Å.

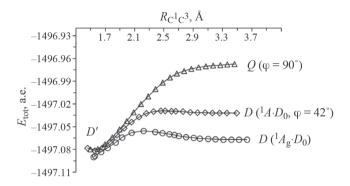
Таблица 1. Среднее значение оператора квадрата спина электрона $\langle \hat{S}^2 \rangle$ электронных состояний комплексов столкновений C_2H_4 -CCl₃ и *s-mpaнc*-C₄H₆-CCl₃

φ, °	0	20	40	50	60	70	80	90			
C_2H_4 - CCl_3											
Состояние $D(Q)$	$^{1}A_{\mathrm{g}}\cdot D_{0}$	$^{1}A\cdot D_{0}$						Q			
$<\hat{S}^2>$	0.754	0.754	0.754	0.754	0.870	1.368	1.725	1.734			
Состояние Q'	$^{3}B_{1u}\cdot D_{0}$	$^3B_1\cdot D_0$					$^{3}A_{2}\cdot D_{0}$				
$<\hat{S}^2>$	3.760	3.760	3.759	3.759	3.759	3.758	3.758	3.758			
s -транс- $\mathrm{C_4H_6}$ - $\mathrm{CCl_3}$											
Состояние $D(Q)$	$^{1}A_{\mathrm{g}}\cdot D_{0}$	$^{1}A\cdot D_{0}$						Q			
$<\hat{S}^2>$	0.754	0.754	0.754	0.755	0.981	1.455	1.748	1.760			
Состояние Q'	$^{3}B_{\mathrm{u}}\cdot D_{\mathrm{0}}$	$^3A \cdot D_0$						$^{3}A^{\prime\prime}\cdot D_{0}$			
$<\!\hat{S}^2\!>$	3.760	3.762	3.770	3.776	3.779	3.782	3.783	3.783			

(значения $R_{\rm C}^{-1}{}_{\rm C}^{-3}$ в комплексе столкновений с наибольшей величиной энергии диссоциации $D_{\rm e}$) до 1.5 Å

Для построения сечения ППЭ основного дублетного состояния ${}^{1}A_{\rm g}\cdot D_0$ комплекса плоского этилена (s-mpa μ c-бутадиена-1,3) и трихлорметильного радикала была определена внутренняя координата IRC. Начальное направление IRC соответствовало геометрии переходного состояния TS и задавалось нормальной модой с мнимой частотой. Для состояний D и Q комплексов C_2H_4 - CCl_3 и s-mpa μ c- C_4H_6 - CCl_3 с фиксированными значениями ϕ >0 было осуществлено сканирование ППЭ вдоль координаты

реакции $R_{\rm C}^{-1}{}_{\rm C}^{-3}$. Начальное направление сканирования задавалось геометрией комплекса межмолекулярных столкновений.


Для определения минимального угла ϕ торсионного вращения метиленовых групп в этилене и *s-mpaнc*-бутадиене-1,3, необходимого для распаривания электронов π -связи, была определена величина энергетического барьера ΔE_{tot} в сечении ППЭ комплексов для каждого значения ϕ (табл. 2).

Величина энергетического барьера $\Delta E_{tot.}$ основного дублетного состояния комплекса плоского этилена (*s-mpaнс*-бутадиена-1,3) с трихлорметильным радикалом определялась по уравнению:

φ, °	0	20	31	42	>42					
Состояние	$^{1}A_{\mathrm{g}}\cdot D_{0}$	$^{1}A\cdot D_{0}$								
C ₂ H ₄ -CCl ₃										
$\Delta \mathrm{E}_{\mathrm{tot.}}$	33.36	28.39	18.38	7.6	_*					
s -транс- C_4 H_6 - CCl_3										
$\Delta \mathrm{E}_{\mathrm{tot.}}$	17.48	13.94	7.7	_	_					

Таблица 2. Величина потенциального барьера ΔE_{tot} (кДж/моль) в сечении ППЭ

^{*} Значение $\Delta E_{tot.}$ не превышает абсолютную ошибку 7.02 кДж/моль.

Рис. 4. Сечения ППЭ комплекса C_2H_4 - CCl_3 для дублетных ${}^1A_g \cdot D_0$, ${}^1A \cdot D_0$ (ϕ =42°) и квартетного Q (ϕ =90°) состояний при изменении координаты реакции $R_C{}^1_C{}^3$.

$$\Delta E_{\text{tot}} = \Delta E + \Delta Z P E, \tag{3}$$

где ΔE — разность между полными энергиями $E_{\rm tot.}$ переходного состояния TS и исходными реагентами: плоским этиленом (s-mpanc-бутадиеном-1,3) и трихлорметильным радикалом, ΔZPE — соответствующая разность в значениях энергии нулевых колебаний. Переходное состояние определялось наличием одной мнимой частоты при вычислении матрицы Гессе.

Для основных дублетного и квартетного (Q) состояний комплексов C_2H_4 - CCl_3 и s-mpanc- C_4H_6 - CCl_3 при фиксированных значениях ϕ > 0 величина $\Delta E_{\text{tot.}}$ определялась по уравнению:

$$\Delta E_{\text{tot.}} = E_{\text{tot.}}(TS) - E_{\text{tot.}}(\text{комплекс}),$$
 (4)

где величина $E_{\mathrm{tot.}}$ (*TS*) определялась как точка в сечении ППЭ.

Из табл. 2 видно, что величина потенциального барьера $\Delta E_{\text{tot.}}$ имеет максимальное значение для основных дублетных состояний $^1A_{\text{g}}\cdot D_0$ комплексов $C_2H_4(D_{2\text{h}})$ -CCl₃ и *s-mpanc*-C₄H₆($C_{2\text{h}}$)-CCl₃ и уменьшается при торсионном вращении

метиленовой группы. Значение $\Delta E_{\rm tot.}=33.36$ кДж/моль (7.98 ккал/моль) для комплекса $\rm C_2H_4(D_{2h})$ - $\rm CCl_3$ (состояние $\rm ^1A_g\cdot D_0$) превышает среднее значение энергии активации 6.3 ккал/моль, определенной в результате кинетических исследований в [24], на 7.02 кДж/моль (1.68 ккал/моль). Как показано в табл. 2, минимальный барьер, для которого величина $\Delta E_{\rm tot.}$ превышает абсолютную ошибку 1.68 ккал/моль, характерен для дублетных состояний $\rm ^1A\cdot D_0$ комплексов $\rm C_2H_4(D_2)$ - $\rm CCl_3$ и $\rm s$ - $\rm mpanc$ - $\rm C_4H_6(C_1)$ - $\rm CCl_3$ при $\rm \phi$ =42° и 31° соответственно.

Сечения ППЭ для состояний D ($^{1}A_{\rm g}\cdot D_{0}$ и $^{1}A\cdot D_{0}$ (ϕ =42°)) и Q (ϕ =90°) комплекса ${\rm C_{2}H_{4}\text{-}CCl_{3}}$ при изменении координаты реакции ${R_{\rm C}}^{1}$ представлены на рис. 4. Определение IRC показало, что конечный продукт имеет симметрию $C_{\rm s}$ с анти-конформацией трихлорметильного фрагмента по отношению к ${\rm C^{1}H_{2}\text{-}rpy}$ ппе и соответствует трихлорпропильному радикалу (1) в основном дублетном состоянии D' (см выше) с локализацией неспаренного электрона на атоме ${\rm C^{2}}$ этиленового фрагмента ($p({\rm C^{2}})\approx 1$ а.е.). Исходный реагент представляет собой комплекс межмолекулярных столкновений ${\rm C_{2}H_{4}}(D_{\rm 2h})$ -СС ${\rm Cl_{3}}$ в основном дублетном состоянии ${\rm ^{1}A_{g}\cdot D_{0}}$.

Сканированные сечения ППЭ дублетного $^{1}A \cdot D_{0}$ (ϕ =42°) и квартетного Q (ϕ =90°) состояний комплекса $C_{2}H_{4}$ -CCl₃ при значении $R_{C}{}^{1}{}_{C}{}^{3} \approx 1.55$ Å также имеют экстремум, характерный для дублетного состояния D' (рис. 4).

Рассмотрим изменение величины $\langle \hat{S}^2 \rangle$ для дублетных D ($^1A_{\rm g}\cdot D_0$ и $^1A\cdot D_0$) и квартетного Q (ϕ =90°) состояний в комплексах ${\rm C_2H_4\text{-}CCl_3}$ и s-mpanc- ${\rm C_4H_6\text{-}CCl_3}$ при уменьшении координаты реакции $R_{\rm C}{}^1_{\rm C}{}^3$. Расчеты показывают, что в состоянии $^1A_{\rm g}\cdot D_0$ комплекса ${\rm C_2H_4}(D_{\rm 2h})\text{-}CCl_3$ величина $\langle \hat{S}^2 \rangle$, равная 0.754 при $R_{\rm C}{}^1_{\rm C}{}^3$ =3.6 Å, увеличивается до 0.777 в переходном состоянии при $R_{\rm C}{}^1_{\rm C}{}^3$ =2.22 Å, а затем уменьшается до 0.754 в трихлорпропильном радикале. При торсионном вращении на угол ϕ =90° (состояние Q) величина $\langle \hat{S}^2 \rangle$ комплекса уменьшается при уменьшении координаты

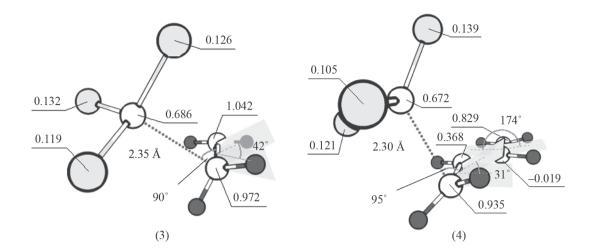
реакции $R_{\rm C}{}^1{}_{\rm C}{}^3$, например, 1.708, 1.008 и 0.753 при $R_{\rm C}{}^1{}_{\rm C}{}^3=3.49$, 2.6 и 1.55 Å соответственно. При значении угла ϕ =42° в комплексе ${\rm C_2H_4}$ -CCl₃ (состояние ${}^1A \cdot D_0$) величина $\langle \hat{S}^2 \rangle$ имеет незначительный максимум 0.810 при $R_{\rm C}{}^1{}_{\rm C}{}^3=2.35$ Å, а при $R_{\rm C}{}^1{}_{\rm C}{}^3=3.49$ Å и 1.55 Å \approx 0.754.

Соответствующие качественные изменения величины $\langle \hat{S}^2 \rangle$ наблюдаются и для состояний $^1A_{\rm g}\cdot D_0$ и Q (ϕ =90°) комплекса s-mpanc- C_4H_6 - CCl_3 при уменьшении координаты реакции $R_{\rm C}{}^1{}_{\rm C}{}^3$ до 1.5 Å. Для состояния $^1A\cdot D_0$ (ϕ =31°) в комплексе s-mpanc- C_4H_6 - CCl_3 величина $\langle \hat{S}^2 \rangle$ имеет максимальное значение 0.810 при $R_{\rm C}{}^1{}_{\rm C}{}^3$ =2.3 Å, а при $R_{\rm C}{}^1{}_{\rm C}{}^3$ =3.59

и 1.5 Å величина $\langle \hat{S}^2 \rangle$ составила 0.755 и 0.780 соответственно.

Можно предположить, что в дублетных состояниях $^1A \cdot D_0$ торсионное вращение метиленовой группы в комплексах C_2H_4 - CCl_3 и s-mpahc- C_4H_6 - CCl_3 обеспечивает распаривание электронов π -связи этилена и s-mpahc-бутадиена-1,3. В результате происходит трансформация дублетных состояний D ($^1A \cdot D_0$) комплексов C_2H_4 - CCl_3 и s-mpahc- C_4H_6 - CCl_3 в квартетные состояния Q и Q', которые можно представить схемой приняв, что знак полного спина системы совпадает со знаком его проекции:

На рис. 5 представлены геометрические параметры и распределение спиновой плотности на атомах комплексов C_2H_4 - CCl_3 3 и s-mpanc- C_4H_6 - CCl_3 4 в квартетных электронных состояниях Q' – $^3B_1\cdot D_0$ (ϕ =42°) и $^3A\cdot D_0$ (ϕ =31°) при значении $R_C{}^1_C{}^3$ =2.35 Å и 2.3 Å соответственно. Для предотвращения распада "квартетных триад" при проведении расчетов комплексов 3 и 4 использовалась constrained оптимизация длин связей d(C-Cl), значения которых соответствуют длине связи d(C-Cl) в трихлорпропильном радикале.


Как видно из рис. 5, три неспаренных электрона в комплексах **3** и **4** локализуются следующим образом: один электрон на атомах трихлорметильного радикала, один электрон на атоме C^1 этилена (*s-mpaнc*-бутадиена-1,3), один электрон на атоме C^2 этилена (аллильном (A) плоском структурном фрагменте *s-mpaнc*-бутадиена-1,3).

Для исследования эволюции квартетного состояния $Q'(^3B_1\cdot D_0)$ комплекса **3** рассмотрим изменение спиновой плотности P на структурных фрагментах C^1H_2 , C^2H_2 , CCl_3 при изменении координаты реакции $R_C^{-1}_{C}^{-3}$ =3.48–1.5 Å (рис. 6). Величины P

комплекса определялись суммированием величин спиновой плотности p_i κa ждого i-го атома структурного фрагмента.

Согласно представленным на рис. 6 результатам, при изменении $R_{\rm C}{}^1{}_{\rm C}{}^3$ в интервале 3.48—2.35 Å распределение спиновой плотности трех неспаренных электронов комплекса ${\rm C_2H_4}\text{-}{\rm CCl_3}$ 3 соответствует рис. 5. Однако при ${R_{\rm C}{}^1{}_{\rm C}{}^3}^< 2.35$ Å отмечаются изменения в распределении спиновой плотности на структурных фрагментах (указано пунктиром на рис. 6). Существенные изменения происходят при ${R_{\rm C}{}^1{}_{\rm C}{}^3}^< 1.86$ Å: величина $P({\rm C}^2{\rm H_2})$ остается равной 1 а.е., величина $P({\rm C}{\rm Cl_3})$ увеличивается до 2 а.е.

Проведенные исследования показали, что соответствующее изменение спиновой плотности на структурных фрагментах наблюдается для квартетного состояний $Q' - ^3A \cdot D_0$ комплекса s-mpanc- C_4H_6 - CCl_3 d при уменьшении координаты реакции $R_C^{\ 1}_C^{\ 3} < 2.3$ Å. Характерные изменения спиновой плотности происходят при изменении величины $R_C^{\ 1}_C^{\ 3} < 1.99$ Å: значение $P(A) \approx 1$ a.e., величина $P(C^1H_2)$ уменьшается до ≈ 0.01 a.e., величина $P(CCl_3)$ увеличивается до ≈ 2 a.e.

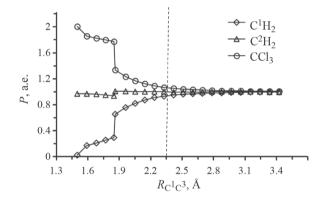


Рис. 5. Геометрические параметры и распределение спиновой плотности на атомах (а.е.) комплексов C_2H_4 - CCl_3 **3** и *s-mpanc*- $C_4H_6(C_1)$ - CCl_3 **4** в электронных состояниях $^3B_1\cdot D_0$ соответственно. Атомы обозначены кружками, затемненные кружки — атомы хлора, темные — атомы водорода.

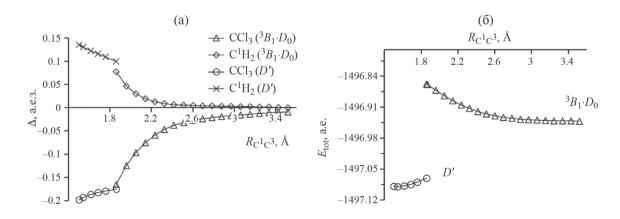
Подобную трансформацию квартетных электронных состояний $^3B_1 \cdot D_0$ комплекса $C_2H_4 - CCl_3$ и $^3A \cdot D_0$ комплекса s-транс- $C_4H_6 - CCl_3$ можно рассматривать как перенос электрона с этиленового и бутадиенового фрагментов на трихлорметильный радикал, который можно интерпретировать как "постороннюю" химическую реакцию [13]. В результате переноса электрона происходит спиновая релаксация и изменение мультиплетности реакционной системы, в результате которой один неспаренный электрон локализуется на фрагменте C^2H_2 молекулы этилена и аллильном A-фрагменте s-транс-бутадиена-1,3, а пара электронов с противоположными спинами — на трихлорметильной группе.

Подобная перестройка электронной структуры обеспечивает новое распределение эффективных зарядов на взаимодействующих атомах C^1 и C^3 в комплексах $\bf 3$ и $\bf 4$, что способствует образованию конечных продуктов. Как видно из рис. 7а, в комплексе C_2H_4 - CCl_3 $\bf 3$ структурный фрагмент C^1H_2 имеет положительный суммарный эффективный заряд $\bf \Delta$, а трихлорметильный радикал — отрицательный на всем интервале изменения координаты реакции R_{CC}^{-1} . Одноэлектронный перенос и последующее изменение мультиплетности в результате спиновой релаксации увеличивает кулоновское взаимодействие между атомами C^1 и C^3 в трихлорпропильном радикале.

Величины Δ фрагментов комплексов определялись суммированием величин эффективных зарядов δ_i κa ждого i-го атома структурного фрагмента. Координата $R_{\rm C}{}^1{}_{\rm C}{}^3$ изменялась в интервале $1.86~{\rm \AA} < R_{\rm C}{}^1{}_{\rm C}{}^3 < 3.49~{\rm \AA}$ для квартетного состояния ${}^3B_1 \cdot D_0$ комплекса C_2H_4 -CCl $_3$ 3 и интервале

Рис. 6. Зависимости спиновой плотности Р на структурных фрагментах комплекса C_2H_4 - CCl_3 3 в электронном состоянии 3B_1 - D_0 от изменения координаты реакции $R_C^1_C^3$.

1.5 Å< $R_{\rm C}{}^{1}{}_{\rm C}{}^{3}$ <1.86 Å для дублетного состояния D' трихлорпропильного радикала.


Увеличение кулоновского взаимодействия в комплексе C_2H_4 - CCl_3 3 можно проиллюстрировать зависимостью $E_{\text{tot.}}$ при изменении координаты реакции $R_C^{\ l}_C^{\ 3}$ (рис. 7б). Одноэлектронный перенос в комплексе C_2H_4 - CCl_3 3, вызывающий увеличение кулоновского взаимодействия реагирующих атомов, обеспечивает выигрыш в энергии при образовании конечных продуктов.

Таким образом, трансформация квартетных состояний Q и Q' комплексов $C_2H_4(D_2)$ - CCl_3 3 и s-mpanc- $C_4H_6(C_1)$ - CCl_3 4 в результате одноэлектронного переноса с последующим образованием конечных продуктов может быть представлена схемами:

выводы

Проведенные исследования показали, что предложенная гипотеза об изменении спинового состояния двухцентровой двухэлектронной связи реагирующей молекулы под возмущающим воздействием органического радикала открывает новые возможности уточнения механизма радикального присоединения к олефинам и диенам. Образующаяся трирадикальная реакционная система (л-комплекс) в квартетном спиновом состоянии претерпевает изменение из-за одноэлектронного переноса между ее компонентами. Дублетное

электронное состояние реакционной системы, как результат эволюции квартетного состояния, представляет собой σ-комплекс, в котором изменяются не только мультиплетность реакционной системы, но и величины распределения эффективных зарядов на ее атомах. Образующееся распределение эффективных зарядов на атомах после одноэлектронного переноса обеспечивает большее кулоновское взаимодействие между реагирующими атомами. Таким образом, образование конечных продуктов осуществляется в рамках фундаментального физического взаимодействия — кулоновского взаимодействия атомов реагирующих молекул.

Рис. 7. Изменение суммарного эффективного заряда Δ на структурных фрагментах (а) и полной энергии $E_{\rm tot}$ (б) в зависимости от координаты реакции $R_{\rm C}{}^1{}_{\rm C}{}^3$ для состояния $^3B_1{}^\cdot D_0$ (4A в симметрии C_1) комплекса $C_2H_4{}^-{\rm CCl}_3$ 3 и дублетного состояния D' ($^2A'$ в симметрии C_s) трихлорпропильного радикала.

СПИСОК ЛИТЕРАТУРЫ

- Kim J., Sun X., van der Worp B.A. et al. // Nature Catalysis. 2023. P. 153. doi 10.1038/s41929-023-00914-7
- 2. *Park S., Jeong J., Fujita K., et al.* // J. Am. Chem. Soc. 2020. V.142. P. 12708. doi10.1021/jacs.0c04598
- 3. *Афанасьев И.Б., Самохвалов Г.И.* // Успехи химии. 1969. Т. 38. № 4. С. 687. [*Afanas'ev I.B., Samokhvalov G.I.* // Russ. Chem. Rev.1969. V.38. № 4. Р. 318.]
- 4. Энглин Б.А., Фрейдлина Р.Х. // Докл.АНСССР. 1964. Т. 158. № 4. С. 922.
- 5. *Нонхибел Д., Уолтон Дж*. Химия свободных радикалов. М.: Мир, 1977. 606 с.
- 6. Stefani A.P., Chuang L.-Y.Y., Todd H.E. // J. Am. Chem. Soc. 1970. V.92. № 14. P. 4168. doi:10.1021/ja00717a004
- 7. *Cvetanović R.J.* // J. Chem. Phys.1959. V.30. № 1. P. 19. doi 10.1063/1.1729874
- 8. Танасейчук Б.С., Томилин О.Б., Пряничникова М.К. // ЖОрХ. 2017. V.53. № 672. [Tanaseichuk B.S., Tomilin O.B., Pryanichnikova M.K. // Russ. J. Org. Chem. 2017. V.53. P. 679] doi 10.1134/S1070428017050062
- 9. Танасейчук Б.С., Томилин О.Б., Пряничникова М.К. // Там же. 2017. V.53. P. 751. [Tanaseichuk B.S., Tomilin O.B., Pryanichnikova M.K. // Russ. J. Org. Chem. 2017. V.53. P. 764.] doi 10.1134/S1070428017050189
- Lifshitz A., Baue rS.H., Resler E.L. // J. Chem. Phys. 1963. V.38. P. 2056. doi 10.1063/1.1733933
- 11. *Douglas J.E., Rabinovitch B.S., Looney F.S.* // Ibid. 1955. V.23. № 2. P. 315. doi 10.1063/1.1741959
- 12. *Rabinovitch B.S.*, *Looney F.S.* // Ibid.1955. V.23. № 12. P. 2439. doi 10.1063/1.1741898
- 13. *Бучаченко А.Л.*, *Бердинский В.Л.* // Успехи химии. 2004. Т. 73. № 11. С. 1123. [*Buchachenko A.L.*, *Berdinsky V.L.* // Russ. Chem. Rev. 2004. V.73. № 11. Р. 1033.] doi10.1070/RC2004v073n11ABEH000888
- Merer A.J., Mulliken R.S. // Chem. Rev. 1969. V.69.
 № 5. P. 639
 doi 10.1021/cr60261a003
- Feller D., Peterson K.A., Davidson E.R. // J. Chem. Phys. 2014. V.141. P. 104302 doi10.1063/1.4894482
- Müller T., Dallos M., Lischka H. // Ibid. 1999. V.110, P. 7176 doi 10.1063/1.478621
- 17. *Angeli C.* // J. Comput. Chem. 2009. V.30. № 8. P. 1319. doi:10.1002/jcc.21155

- Magee J.L., Shand W., Eyring H. // J. Am. Chem. Soc. 1941. V.63. P. 677. doi 10.1021/ja01848a012
- Korff M., Paulisch T.O., Glorius F. et al. // Molecules. 2022. V.27. P. 5342. doi 10.3390/molecules27165342
- Salem L., Rowland C. // Angew. Chem., Int. Ed. Engl. 1972. V.11. № 2. P. 92. doi10.1002/anie.197200921
- 21. *Manna S., Chaudhuri R.K., Chattopadhyay S. //* J. Chem. Phys. 2020. V.152. P. 244105. doi:10.1063/5.0007198
- Bonacic-Koutecky V., Persico M., Dohnert D. et al. // J. Am. Chem. Soc. 1982. V.104. P. 6900. doi10.1021/ja00389a003
- 23. *Фрейдлина Р.Х., Белявский А.Б.* // Изв. АНСССР, OXH. 1961. C. 177.
- 24. *Sidebottom H.W., Tedder J.M.* // Int. J. Chem. Kin. 1972. V.4. P. 249. doi:10.1002/kin.550040212
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V.2. P. 73. doi 10.1002/wcms.81
- 26. *Liakos D.G., Guo Y., Neese F.* // J. Phys. Chem. A. 2020. V.124. № 1. P. 90. doi 10.1021/acs.jpca.9b05734
- 27. *Altun A., Saitow M., Neese F. et. al.* // J. Chem. Theory Comput. 2019. V.15. № 3. P 1616 doi 10.1021/acs.jctc.8b01145
- 28. *Gallagher N.M., Bauer J.J., Pink M. et al.* // J. Am. Chem. Soc. 2016. V.138. P. 9377. doi:10.1021/jacs.6b05080
- 29. Плехович С.Д., Зеленцов С.В., Минасян Ю.В. и др. // Химия высоких энергий. 2022. Т. 56. № 1. С. 38. [Plekhovich S.D., Zelentsov S.V., Minasyan Yu.V. et al. // High Energy Chem. 2022. V.56. № 1. P. 32] doi 10.1134/S001814392201009X
- 30. *Kuzmin A.V. Shainyan B.A.* // J. Phys. Org. Chem. 2014. V.27. № 10. P. 794. doi10.1002/poc.3338
- 31. *Craig N.C.*, *Groner P.*, *McKean D.C.* // J. Phys. Chem. A. 2006. V.110. № 23. P. 7461. doi 10.1021/jp060695b
- 32. *Wallace R.* // Chem Phys Letters. 1989. V.159. № 1. P. 35. doi 10.1016/S0009-2614(89)87449-4
- 33. *Hudgens J.W., Johnson R.D., Tsai B.P. et al.* // J. Am. Chem. Soc. 1990. V.112. P. 5763. doi:10.1021/ja00171a015
- 34. *Minaev B.F., Kukueva V.V.* // J. Chem. Soc. Faraday Trans. 1994. V. 90. № 11. P. 1479. doi 10.1039/FT9949001479
- 35. *Jurecka P., Sponer J., Cerný J., Hobza P.* // Phys Chem Chem Phys. 2006. V.8. № 17. P. 1985. doi: 10.1039/b600027d