—— К 100-ЛЕТИЮ ЛАБОРАТОРИИ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ МГУ **——**

УДК 544.31.031

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ТВЕРДОГО РАСТВОРА $Yb_2O_3 \cdot 2HfO_2^{-1}$

© 2024 г. А. В. Гуськов^а, П. Г. Гагарин^а, В. Н. Гуськов^{а, *}, А. В. Хорошилов^а, К. С. Гавричев^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, 119991, Москва, Россия

*e-mail: guskov@igic.ras.ru

Поступила в редакцию 08.12.2023 г. После доработки 08.12.2023 г. Принята к публикации 22.12.2023 г.

Методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии на синтезированном и охарактеризованном РФА, электронной микроскопией и химическим анализом образце твердого раствора $Yb_2O_3\cdot 2HfO_2$ проведены измерения изобарной теплоемкости в интервале 2.4—1807 К и рассчитаны термодинамические функции с учетом вклада низкотемпературного превращения. Выделен вклад аномалии Шоттки в теплоемкость в области 2.4—300 К.

Ключевые слова: двойной оксид иттербия-гафния, калориметрия, термодинамические функции, аномалия Шоттки

DOI: 10.31857/S0044453724090078, EDN: OODJQM

ВВЕДЕНИЕ1

Изучение фазовых равновесий в системах диоксид гафния — оксиды редкоземельных элементов подгруппы иттрия показало образование широких концентрационных областей существования непрерывного ряда твердых растворов $xRE_2O_3\cdot 2(1-x)$ HfO₂ на основе кубического диоксида гафния [1]. Эти твердые растворы образуются заменой иона ${\rm Hf}^{4+}$ на ион ${\rm RE}^{3+}$ в кубической решетке типа флюорита, а компенсация заряда происходит в результате образования вакансии кислорода [2]. Было установлено, что твердые растворы оксидов гафния и иттербия характеризуются рекордно высокой температурой плавления ~2875°C вблизи значения x=0.5, т.е. соотношения металлов 1:1 [1]. Несколько иная температура плавления ~ 2710°C твердого раствора Yb₂O₃·2HfO₂ найдена в выполненной ранее работе [3]. Однако более подробные исследования фазовых равновесий, проведенные в [4], подтвердили, что температура плавления этого твердого раствора близка к максимальной температуре существования двойного оксида лютеция-гафния (~2900°C) и превышает как температуру плавления диоксида гафния (2715°C), так и температуры плавления остальных двойных оксидов гафния и редкоземельных элементов, включая гафнаты "легких" лантаноидов RE₂Hf₂O₇. Таким образом, следует

считать твердый раствор рационального состава $Yb_2O_3 \cdot 2HfO_2$ одним из наиболее тугоплавких веществ. Важным свойством этих твердых растворов является отсутствие структурных превращений во всей области существования, нижний предел которой для Yb_2O_3 ·2HfO₂ составляет ~ 650°C. По данным [4] ниже этой температуры в результате довольно длительного отжига (> 5000 ч) наблюдается его распад на моноклинный диоксид гафния и, так называемую, гексагональную δ -фазу – $Yb_4Hf_3O_{12}$. Аналогичный распад наблюдали и в случае систем $ZrO_2-Y_2O_3$ и $HfO_2-Y_2O_3$ [5]. Длительности отжигов, которые позволили зафиксировать процесс распада, свидетельствуют о крайне низких скоростях диффузии компонентов этих твердых растворов и их устойчивом метастабильном состоянии. Тем не менее, о возможности распада твердых растворов не следует забывать при практическом применении высокотемпературных материалов на их основе. Перспективы практического использования твердых растворов структурного типа флюорита достаточно широки и включают термобарьерные покрытия [6], электролиты твердооксидных топливных элементов [7, 8], материалы для иммобилизации ядерных отходов [9, 10]. Что касается оксида иттербия, то особый интерес к нему связан с разработкой на основе лантаноидов так называемых "высокоэнтропийных" оксидов: иттербий имеет максимальную атомную массу и минимальный атомный радиус среди относительно

¹ Дополнительные материалы к статье размещены на сайте https://elibrary.ru

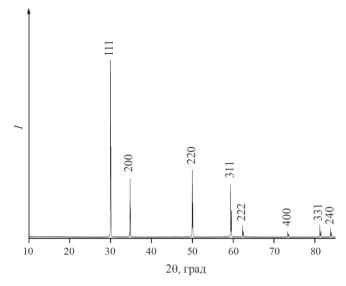
доступных лантаноидов, что способствует понижению теплопроводности [11-13].

Важным требованием к защитным материалам является химическая стойкость по отношению к агрессивному окружению при высоких температурах. Так как прямые исследования коррозионной стойкости в экстремальных условиях затратны и затруднительны, то математическое моделирование может значительно упростить эту задачу [14,15]. Однако для его проведения необходимо знание термодинамических свойств участвующих в высокотемпературных процессах веществ.

Нами ранее опубликованы результаты исследования теплоемкостей и термического расширения твердых растворов $Ln_2O_3 \cdot 2HfO_2(Ln = Dy, Ho, Er, Tm, Yb, Lu)$ в интервале температур 300—1300 K [16].

Целью настоящей публикации являются результаты определения теплоемкости и расчета термодинамических функций твердого раствора Yb_2O_3 ·2HfO₂ интервале температур 2—1800 K.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


Синтез твердого раствора проводили обратным осаждением гидроксидов иттербия и гафния с последующим ступенчатым отжигом. Последнюю стадию отжига проводили в течение 4 ч при температуре ~1600°C. Идентификацию полученного твердого раствора Yb₂O₃·2HfO₂ осуществляли методами РФА, РЭМ и ИСП. Измерения теплоемкости проводили методом релаксационной калориметрии (2-20 К) на установке измерения физических свойств PPMS-9, адиабатической калориметрии (5-347 К) - на автоматическом калориметре БКТ-3. Подробное описание синтеза, идентификации и измерений теплоемкости содержится в работе [17]. Для измерений теплоемкости в интервале температур 317-1807 К использовали установку термического анализа DSC404 F1 Pegasus® фирмы Netzsch [18].

Молярную массу твердого раствора рассчитывали в соответствии с рекомендациями [19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате синтеза был получен однофазный образец $Yb_2O_3 \cdot 2HfO_2$ с параметром кубической ячейки структурного типа флюорита a=5.157(1) Å, рис. 1. По данным химического анализа образец содержал 49.97 ± 0.05 мол .% $2HfO_2$. По результатам EDX он не содержал посторонних примесей и не являлся наноразмерным (Приложение, рис.П1), что подтверждено оценками полуширины рефлексов дифрактограммы по Шереру.

Измерения теплоемкости выполнены методами релаксационной 2.36—19.76 К (30 точек), адиабатической 4.97—246.9 К (143 точки)

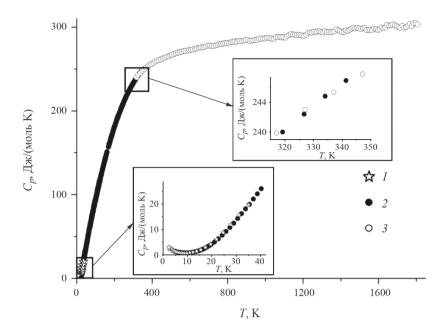
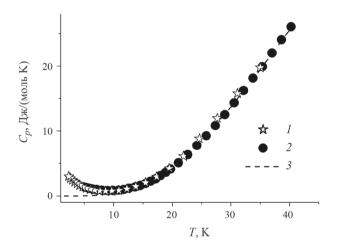
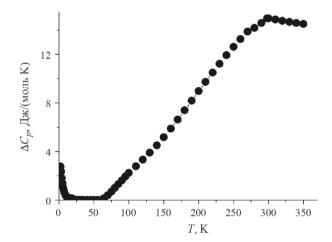


Рис. 1. Дифрактограмма образца твердого раствора Yb_2O_3 · $2HfO_2$, структурный тип *Fm3m*, a=5.157(1) Å, CuK_α -излучение, $\lambda=1.5418$ Å.


и дифференциальной сканирующей калориметрией 317—1807 К (150 точек). Экспериментальные результаты приведены в Приложении, таблица П1, и на рис. 2. Данные, полученные разными методами, удовлетворительно согласуются между собой, а температурная зависимость теплоемкости не содержит признаков структурных превращений.


Температурная зависимость теплоемкости в области 20-70 К практически совпадает с теплоемкостью твердого раствора Lu₂O₃·2HfO₂ [20], а понижение температуры от 20 К сопровождается появлением минимума на кривой теплоемкости (~10 К и $\sim 0.85 \, \text{Дж/(моль K)}$), рис. 3, и ее дальнейшим ростом. Возрастание теплоемкости обусловлено магнитным превращением с максимумом, который находится при температурах ниже 2.4 К. Заметное влияние магнитного превращения на теплоемкость у соединений лантаноидов, как правило, заканчивается в области 15-20 К [21]. Совпадение теплоемкостей твердых растворов Yb₂O₃·2HfO₂ и Lu₂O₃·2HfO₂ объясняется, с одной стороны, результатом возрастания массы лютеция относительно иттербия, которое компенсируется уменьшением объема кристаллической решетки из-за лантаноидного сжатия, с другой — отсутствием заметного вклада аномалии Шоттки в этой области температур.

Повышение теплоемкости твердого раствора $Yb_2O_3\cdot 2HfO_2$ относительно $Lu_2O_3\cdot 2HfO_2$ за счет вклада аномалии Шоттки [22] наблюдается при температурах выше ~70 K (рис. 4) и достигает максимума ~15 Дж/(моль K) около 300 K. Определение разности при более высоких температурах не имеет смысла из-за погрешностей в измерениях теплоемкости методом ДСК.

Рис. 2. Экспериментальная теплоемкость твердого раствора Yb_2O_3 ·2HfO₂ по результатам: I — релаксационной, 2 — адиабатической и 3 — дифференциальной сканирующей калориметрии; на врезках — области низких температур (0—37 K) и стыковки данных адиабатической и дифференциальной сканирующей калориметрии (320—360 K).

Рис. 3. Молярная теплоемкость твердого раствора $Yb_2O_3 \cdot 2HfO_2$ в области температур 0–42 К по результатам: I – релаксационной и 2 – адиабатической калориметрии; 3 – теплоемкость твердого раствора $Lu_2O_3 \cdot 2HfO_2[20]$.

Рис. 4. Разность теплоемкостей твердых растворов Yb_2O_3 · $2HfO_2$ и Lu_2O_3 · $2HfO_2$ [20].

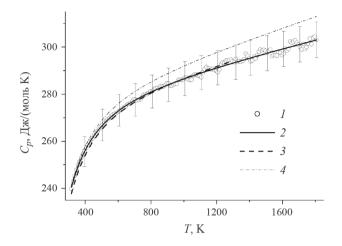
Совпадение теплоемкостей $Yb_2O_3 \cdot 2HfO_2$ и $Lu_2O_3 \cdot 2HfO_2$ при температурах в интервале 20-70 К позволяет считать, что накопленная ниже 20 К решеточная энтропия $Yb_2O_3 \cdot 2HfO_2$ имеет ту же величину, что и для $Lu_2O_3 \cdot 2HfO_2$ [20]. Считая, что магнитное превращение увеличивает энтропию твердого раствора на $2Rln2 \approx 11.53$ Дж/(моль K), общая величина энтропии твердого раствора $Yb_2O_3 \cdot 2HfO_2$

составит при 20 К $S(20 \text{ K}) \approx 12.97 \text{ Дж/(моль K)}$. Последующие расчеты термодинамических функций проведены с учетом этой оценки энтропии. Более точное значение может быть получено при исследовании теплоемкости в интервале температур 0-2.5 K, которое в настоящее время недоступно для нас.

Сглаживание теплоемкости выполнено в области 2-40 K с использованием полинома

Таблица 1. Теплоемкость и термодинамические функции твердого раствора Yb₂O₃·2HfO₂ (флюорит)

<i>T</i> , K	C_p Дж/(моль K)	<i>S</i> (<i>T</i>) Дж/(моль K)	<i>H(T)</i> – <i>H</i> (0 K) Дж/моль	<i>T</i> , K	C_p Дж/(моль K)	<i>S(T)</i> Дж/(моль K)	<i>H</i> (<i>T</i>)- <i>H</i> (0 K) Дж/моль
2	2.952	8.96	8.98	190	173.6	157.8	16260
3	2.366	10.04	11.63	200	180.7	166.9	18040
4	1.871	10.66	13.74	210	187.4	175.9	19880
5	1.465	11.03	15.41	220	193.8	184.8	21800
6	1.146	11.27	16.70	230	199.8	193.5	23750
7	0.910	11.42	17.73	240	205.4	202.1	25780
8	0.755	11.53	18.56	250	210.8	210.6	27860
9	0.680	11.62	19.27	260	215.8	219.0	30000
10	0.682	11.69	19.96	270	220.5	227.2	32170
12	0.910	11.83	21.54	280	225.0	235.3	34400
14	1.423	12.00	23.92	290	229.2	243.3	36670
16	2.207	12.00	27.70	298.15	232.4	249.7	38550
18	3.245	12.24	33.47	300	233.0	251.2	38980
20	4.522	12.30	41.81	310	236.1	258.8	41330
				320	239.0	266.4	43700
25 30	8.422	14.33	72.83 127.6	330	241.6	273.8	46110
	13.59	16.31		340	244.0	281.0	48540
35	19.36	18.8	209.8	350	246.3	288.1	50990
40	25.43	21.8	321.7	400	255.4	321.7	63540
45 5 0	31.62	25.2	464.3	450	261.9	352.1	76480
50	37.80	28.8	637.8	500	266.7	380.0	89700
60	49.96	36.8	1077	600	273.2	429.2	116700
70	61.78	45.4	1636	700	277.6	471.7	144300
80	73.17	54.4	2311	800	280.9	509.0	172200
90	84.12	63.6	3098	900	283.8	542.2	200400
100	94.63	73.0	3992	1000	286.4	572.3	228900
110	104.7	82.5	4989	1100	288.8	599.7	25770
120	114.5	92.1	6085	1200	291.2	624.9	286700
130	123.9	101.6	7277	1300	293.4	648.3	315900
140	133.0	111.1	8562	1400	295.4	670.1	345400
150	141.8	120.6	9936	1500	297.4	690.6	375000
160	150.3	130.0	11400	1600	299.2	709.8	404900
170	158.4	139.4	12940	1700	300.9	728.0	434900
180	166.2	148.7	14560	1800	302.4	745.2	465000


пятой степени $C_p = \Sigma A_i T^i$ (i=0...5), а в температурных интервалах 20—350 и 250—1800 К — с помощью программы СрFit, основанной на линейной комбинации функций Эйнштейна: $C_p(T) = 3R\Sigma a_i[(\theta_i/T)^2 e^{\theta i/T}/(e^{\theta i/T}-1)^2]$, где R — универсальная газовая постоянная, a_i и θ_i — варьируемые параметры [23, 24]. Сглаженные значения теплоемкости и рассчитанные значения термодинамических функций приведены в таблице 1, а параметры использованных моделей содержатся в табл. П2 Приложения.

Высокотемпературная теплоемкость твердого раствора $Yb_2O_3 \cdot 2HfO_2$ (Дж/(моль K)) может быть также представлена уравнением Майера—Келли [25]:

$$C_p = 273.00 + 0.0172641T - 3815631.9T^2,$$

$$R^2 = 0.9949.$$
(1)

Сглаженные значения теплоемкости (Дж/ (моль K)) (рис. 5, 2) практически совпадают с опубликованной ранее [16] зависимостью (рис. 5, 3)

Рис. 5. Высокотемпературная теплоемкость твердого раствора Yb_2O_3 $2HfO_2$ (*I*), 2 — сглаженная теплоемкость (1), 3 — работа [16], (2), и 4 — модельный расчет по Нейману—Коппу из теплоемкостей простых оксидов Yb_2O_3 [22] и HfO_2 [23].

$$C_p = 270.66 + 0.0198448T - 3939387.6T^2,$$

$$R^2 = 0.9999.$$
(2)

полученной на установке синхронного термического анализа STA449F1 Jupiter® фирмы Netzsch.

Расчет теплоемкости твердого раствора $Yb_2O_3 \cdot 2HfO_2$ по Нейману—Коппу из теплоемкостей простых оксидов Yb_2O_3 [26] и HfO_2 [27] (рис. 5, 4) показал, что модельная зависимость имеет более крутой ход по сравнению с экспериментальными результатами. При температурах выше 900 К расчетная зависимость выходит за область доверительного интервала и ее использование в расчетах при более высоких температурах может привести к ошибочным результатам.

ВЫВОДЫ

На синтезированном и идентифицированном методами физико-химического анализа образце твердого раствора $Yb_2O_3\cdot 2HfO_2$ измерена изобарная теплоемкость в области температур 2.4—1807 K, выполнено сглаживание и рассчитаны энтропия и приращение энтальпии в указанном температурном интервале. Аномалий, свидетельствующих о наличии структурных превращений во всем изученном интервале температур, не найдено. Проведена оценка аномального вклада Шоттки в теплоемкость твердого раствора $Yb_2O_3\cdot 2HfO_2$ в области 2—300 K. Показано, что использование модельного расчета теплоемкости $Yb_2O_3\cdot 2HfO_2$ из простых оксилов дает завышенные значения.

Исследование выполнено за счет гранта Российского научного фонда № 18-13-00025, https://

rscf.ru/project/18-13-00025/, с использованием оборудования ЦКП ФМИ ИОНХ РАН.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шевченко А.В., Лопато Л.М., Кирьякова И.Е. // Изв. АН СССР. Неорган. матер. 1984. Т. 20. С. 1991. [Schevchenko A.V., Lopato L.M., Kir'yakovaI.E.// Izv. AN SSSR. Inorg. Mater. 1984. V.20. P. 1991. (on Russian)]
- Andrievskaya E.R. // J. Europ. Ceram. Soc. 2008.
 V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
- 3. Портной К.И., Тимофеева Н.И., Салибеков С.Е., Романович И.В. // Изв. АН СССР. Неорган. материалы. 1970. Т. 6. С. 91. [Portnoy K.I., Timofeeva N.I., Salibekov S.E., Romanovich I.V. // Izv. AN SSSR. Inorg. Mater. 1970. V.6. P. 91 (on Russian)
- Duran P., Pascual C. // J. Mater. Sci. 1984. V. 19. P. 1178. https://doi.org/10.1007/bf01120027
- Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1988. V. 71. P. 662. https://doi.org/10.1111/j.1151-2916.1988.tb06385.x
- Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V.8.
 P. 22.
 https://doi.org/10.1016/S1369-7021(05)70934-2
- 7. *Tuller H.L.* // Solid State Ionics. 1992. V.52. P. 135. https://doi.org/10.1016/0167-2738(92)90099-B
- 8. *Steele B.C.H.* // Solid State Ionics. 1994. V.68. P. 9. https://doi.org/10.1016/0167-2738(94)90231-3
- 9. Weber W.J., Ewing R.C. //MRS Online Proceedings Library. 2001. V. 713. P. 31. https://doi.org/10.1557/PROC-713-JJ3.1
- 10. Sickafus K., Minervini L., Grimes R.W., et al. // Science. 2000. V. 289. P. 748. http://dx.doi.org/10.1126/science.289.5480.748
- Longkang Cong L., Li W., Wang J., et al.// J. Mater. Sci. Tech. 2022. V. 101. P. 199. https://doi.org/10.1016/j.jmst.2021.05.054
- Liu Z., Wang L., Ding C., et al. // Ceram. Int. 2024.
 V. 50. P. 5955.
 https://doi.org/10.1016/j.ceramint.2023.11.152
- Musico B.L., Gilbert D., Ward Z.W., et al. //APL Mater. 2020. V. 8. P. 040912. https://doi.org/10.1063/5.0003149
- 14. Summers W.D., Poerschke D.L., Begley M.R., et al.// J. Am. Ceram. Soc. 2020. V. 103. P. 5196. https://doi.org/10.1111/jace.17187
- Fabrichnaya O., Seifert H.J. // J. Phase Eq. Diffus. 2010. V. 32. P. 2. https://doi.org/10.1007/s11669-010-9815-4

- 16. Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- 17. *Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. //* Журн.физ.химии. 2022. Т. 96. С. 1230. https://doi.org/10.31857/S004445372209014X [*Guskov A.V., Gagarin P.G., Guskov V.N., et al. //* Russ. J. Phys. Chem. A. 2022. V. 96. P. 1831. https://doi.org/10.1134/S0036022442209014X]
- 18. https://analyzing-testing.netzsch.com/ru/pribory-resheniya/differenczialnaya-skaniruyushhaya-kalorimetriya-dsk-differenczialnyj-termicheskij-analiz-dta/dsc-404-f1-pegasus
- 19. *ProhaskaT., Irrgeher J., Benefield J., et al.* // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
- 20. *Гуськов А.В., Гагарин П.Г., Гуськов В.Н., и др. //* Докл. РАН. Химия, науки о материалах. 2021. Т. 498. С. 83. https://doi.org/10.31857/S2686953521050083 [*Guskov A.V., Gagarin P.G., Guskov V.N., et al.//*

- Doklady Physical Chemistry, 2021. V. 500. P. 105. https://doi.org/10.1134/S001250162110002X]
- Tari A.// Imperial College Press. 2003. 211 P. https://doi.org/10.1142/9781860949395_0006
- Westrum E.F. Jr.// J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
- Voskov A.L., Kutsenok I.B., Voronin G.F. //Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- 25. *Maier C.G., Kelley K.K.* // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- 26. *Konings R.J.M., Beneš O., Kovács A., et al.* // J. Phys. Chem. Refer. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
- Pankratz L.B. // U.S. Bureau of Mines Bulletin. 1982.
 V. 672, 509 P.