——— ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ **—**

УДК 541.128+541.14+546.261:620.193

КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА И АДСОРБЦИОННАЯ АКТИВНОСТЬ ЖЕЛЕЗОСОДЕРЖАЩИХ КОМПОЗИТОВ В ПРОЦЕССАХ ФОТОКАТАЛИТИЧЕСКОЙ ДЕГРАДАЦИИ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ

© 2024 г. Л. Н. Скворцова^a, *, И. А. Тихонова^a, К. А. Дычко^a, Т. С. Минакова^a, К. А. Болгару^b

^аНациональный исследовательский Томский государственный университет 634050, Томск, Россия ^bТомский научный иентр СО РАН 634021, Томск, Россия

> *e-mail: lnskvorcova@inbox.ru Поступила в редакцию 12.01.2024 г. После доработки 05.03.2024 г. Принята к публикации 11.03.2024 г.

Установлен фазовый состав железосодержащих металлокерамических композитов на основе нитридов алюминия, хрома и ванадия, полученных методом автоволнового горения ферросплавов (феррованадий, феррохромалюминий, ферроалюмосиликоцирконий) в азоте, и проведена количественная оценка содержания железа на их поверхности методом растровой электронной микроскопии с применением приставки для микрорентгеноспектрального анализа. Индикаторным методом Гаммета и Танабе установлено, что на поверхности композита на основе нитрида хрома доминируют апротонные основные центры Льюиса ($pK_a - 0.29$) и сильнокислотные центры Бренстеда ($pK_a 2.01, 4.1$), поверхность образца на основе нитрида ванадия имеет наибольший набор кислотных центров Бренстеда ($pK_a 1.3 - 5.5$). Корреляция адсорбционной активности композитов к исследуемым органическим загрязнителям (метамизол, циннаризин, метиленовый синий, метиловый оранжевый) с природой и количеством кислотно-основных активных центров на поверхности материала указывает на процесс хемосорбции. Предложены механизмы процессов. Высокая степень окислительной деструкции органических загрязнителей (64—96%) в условиях УФ-облучения обусловлена адсорбционными свойствами композитов и совмещением гетерогенного фотокатализа и гомогенного процесса Фентона.

Ключевые слова: металлокерамические композиты, кислотно-основные центры, спектрофотометрия, адсорбция, фотокатализ

DOI: 10.31857/S0044453724100054, EDN: NMGIUG

В настоящее время актуальной во всем мире является проблема загрязнения водных источников растворимыми органическими загрязнителями (РОЗ). Полное удаление РОЗ из водных сред связывают с применением передовых окислительных технологий (AOPs – Advanced Oxidative Processes), сущность которых состоит в генерации частиц с высокой реакционной способностью, которые сочетают высокую эффективность в мягких условиях и безопасность для окружающей среды [1]. В этой связи возрос интерес к применению гетерогенного и гомогенного фотокатализа, как передовой технологии окисления. В гетерогенном фотокатализе перспективны полупроводниковые материалы [2-5], активность которых основана на преобразовании энергии поглощенных фотонов УФ- и видимого света в химическую энергию. В условиях гомогенного фотокатализа наиболее популярным остается процесс Фентона [6, 7], который основан на инициировании гидроксил радикалов в растворе, содержащем пероксид водорода и катионы переходных металлов, в частности, Fe^{2+}/Fe^{3+} .

Нами установлена высокая фотокаталитическая активность железосодержащих металлокерамических композитов на основе нитридов бора, кремния и сиалона (твердый раствор переменного состава $\mathrm{Si}_{6-x}\mathrm{Al}_x\mathrm{O}_x\mathrm{N}_{8-x}$) в процессах окислительной деструкции фенольных соединений, формальдегида, диклофенака, хлорамфеникола и ряда красителей [8–11]. Эффективность катализаторов обусловлена наличием в керамической матрице полупроводниковых соединений BN. β -Si3N₄, β -Si₃Al₃O₃N₅ и фазы металлического железа, что в присутствии $\mathrm{H}_2\mathrm{O}_2$ дает возможность для совмещения гетерогенного и гомогенного фотокатализа.

Эффективность гетерогенного катализа в значительной мере зависит от адсорбции участников процесса на поверхности катализатора. Прежде всего это характерно для процессов хемосорбции, обеспечивающих активацию молекул адсорбата. Хемосорбция протекает не на всей поверхности твердого тела, а главным образом на активных центрах (в том числе кислотно-основных), в качестве которых могут выступать атом или группа атомов с оборванной связью и проявляющих химическую активность.

Цель работы — оценка природы кислотно-основных центров поверхности металлокерамических композитов на основе нитридов алюминия, хрома и ванадия и установление взаимосвязи кислотно-основных свойств и их адсорбционной и фотокаталитической активности в процессах окислительной деструкции растворимых органических загрязнителей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Композиционные материалы на основе нитридов алюминия, хрома и ванадия синтезированы методом самораспространяющегося высокотемпературного синтеза (СВС) в Томском научном центре СО РАН. Достоинством метода СВС является отсутствие энергозатрат, поскольку используется химическая энергия реагирующей системы. Кроме того, использовано дешевое сырье — ферросплавы (отходы металлургического производства в виде циклонной пыли) вместо дорогостоящих высокодисперсных порошков хрома, ванадия, оксидов кремния, алюминия. Железосодержащие композиты получены в режиме автоволнового горения прекурсоров в азоте. В качестве прекурсоров использованы ферросплавы: 1) феррованадий (промышленная марка ФВ80, представляет собой твердый раствор — V(Fe), содержит V - 78.8 мас. %, Fe - 21.2 мас. %); 2) ферроалюмосиликоцирконий (промышленная марка ФСЦр30, является многофазным материалом и включает фазы: ZrSi₂, ZrAl₃, $ZrFe_2$, FeAl, $Zr_4Fe_4Si_7$ и Al, содержит — 27.1 мас. % Fe, 21.6 мас. % Zr, 25.9 мас. % Si и 24.8 мас. % Al); 3) феррохромалюминий (промышленная марка FeCrAl 25/5, включает фазы: CrAl, FeCr и FeAl, содержит: Al -6.5 мас. %, Cr -26 мас. %, Fe -67.5 мас. %).

Азотирование порошков прекурсоров проводили в установке постоянного давления объемом 3 л с рабочим давлением 4 МПа. Измельченный порошок сплава с размером частиц < 100 мкм засыпали в цилиндрические трубки из металлической сетки диаметром 50 мм. Воспламенение осуществлялось от порошкообразной поджигающей смеси с помощью вольфрамовой спирали, через которую пропускали электрический ток. После прохождения фронта горения, образец выдерживали

в атмосфере азота до полного остывания, затем давление сбрасывали, а продукт СВС извлекали из установки для дальнейших исследований.

Фазовый состав материалов изучали методом рентгеновской дифракции на дифрактометре XRD6000 (Япония, Shimadzu) при Со-излучении со скоростью съемки 2—4 град/мин. Для расшифровки дифрактограмм использовали программное обеспечение Match3 с базой данных PDF 4. Содержание железа на поверхности исследуемых материалов определяли с применением приставки Quantax 70 к растровому электронному микроскопу "HitachiTM3000" для микрорентгеноспектрального анализа (MPCA). В связи с неоднородностью образцов для анализа отбирали большое количество частиц и проводили многоточечный элементный анализ поверхности.

Общее содержание растворенного железа в воде после контакта с композитами в условиях УФ-облучения контролировали спектрофотометрическим (СФ) методом с сульфосалициловой кислотой.

Кислотно-основные свойства поверхности композитов изучали методом рН-метрии, позволяющим оценить интегральную кислотность. Методика исследования описана в работах [12, 13]. Измерение рН среды проводили на рН-метр/милливольтметре PP-15 (Германия). Для этого в химический стакан вводили 10 мл бидистиллированной воды и после стабилизации рН комбинированного электрода PY-P11 (рН₀) добавляли 0.1 г образца. Затем регистрировали изменение рН водной суспензии образцов во времени и строили кинетические кривые, которые отражали кислотно-основные свойства поверхности твердого тела и указывали на преобладание кислотных либо основных центров.

Оценку количества поверхностных центров по кислотно-основным свойствам проводили индикаторным методом, основанным на представлениях Гаммета и Танабэ и усовершенствованным Нечипоренко [14—16], с использованием 16 индикаторов со значениями р K_a в интервале -0.29...+14.2 (табл. 1).

Концентрацию активных центров данной силы (q), эквивалентную количеству адсорбированного красителя рассчитывали по формуле:

$$q = \left| \frac{|D_0 - D_1|}{m_1} \pm \frac{|D_0 - D_2|}{m_2} \right| \cdot c_{\text{ind}} \cdot v_{\text{ind}} / D_0, \quad (1)$$

где $c_{\rm ind}$ и $v_{\rm ind}$ — концентрация и объем индикатора, m_1 и m_2 — навески образца при измерении D_1 и D_2 , D_0 — оптическая плотность раствора индикатора до сорбции, D_1 — оптическая плотность раствора индикатора после сорбции, D_2 — оптическая плотность раствора индикатора в холостом опыте. Знаки (+) и (—) отвечают соответственно

Таблица 1. Характеристика	использованных	кислот-
но-основных индикаторов		

	Индикатор	pK_a	λ нм
7.45	индикатор	pra	λ _{max} , нм
1	О-нитроанилин	-0.29	410
2	Кристаллический фиолетовый	0.80	590
3	Бриллиантовый зеленый	1.30	625
4	Фуксин (осн.)	2.10	545
5	М-нитроанилин	2.60	355
6	Метиловый оранжевый	3.46	465
7	Бромфеноловый синий	4.10	590
8	Хризоидин	5.50	445
9	Бромкрезоловый пурпурный	6.40	590
10	П-нитроанилин	7.15	320
11	Бромтимоловый синий	7.30	430
12	Феноловый красный	8.00	435
13	Тимоловый синий	8.80	435
14	Нильский голубой	10.50	630
15	Тропеолин О	12.00	420
16	Индигокармин	12.80	610

разнонаправленному и однонаправленному изменению D_1 и D_2 относительно D_0 [15]. Оптическую плотность определяли с использованием спектрофотометра ПЭ-5400В (Россия).

Кривые распределения центров адсорбции по кислотной силе на поверхности образцов строили в координатах $q_{pK_a} = f(pK_a)$. Функцию кислотности поверхности композитов расчитывали как среднестатистическую величину от совокупности всех центров ($\sum q_{pK_a}$) по уравнению:

$$H_0 = \frac{\Sigma p K_a \cdot q_{pK_a}}{\Sigma p K_a},\tag{2}$$

где $q_{\mathrm{p}K_{\mathrm{a}}}$ — количество центров данной кислотной силы [14].

В качестве РОЗ использовали фармацевтические препараты (метамизол (натриевая соль (2,3-дигидро-1,5-диметил-3-оксо-2-фенил-1Н-пиразол-4-ил) метиламино) метансульфоновой кислоты), циннаризин (1-(дифенилметил)-4-(3-фенил-2-пропенил) пиперазин) и красители (метиловый оранжевый (4-(4-диметиламинофенилазо) бензолсульфонат натрия), метиленовый синий (N, N, N', N'-тетраметилтионина хлорид тригидрат, 3,7-бисдиметиламинофенотиазин хлорид).

Адсорбционные свойства композитов изучали по методике: 100 мг композита заливали 10 мл раствора РОЗ и ставили на магнитную мешалку на 10,

20 и 30 мин. Исходные концентрации метамизола (Met) - 25 мг/л, циннаризина (Cinn) - 12.5 мг/л,метилового оранжевого (MO) -10 мг/л, метиленового синего (MC) -5 мг/л. Растворы метамизола готовили из таблеток анальгина (Борисовский завод медицинских препаратов) следующим образом: из растертых в агатовой ступке таблеток готовили водную суспензию, затем нерастворимую часть отделяли фильтрованием, а раствор собирали в мерную колбу. Концентрацию полученного раствора уточняли по градуировочному графику, построенному с использованием инъекционной формы метамизола. Растворы циннаризина получали из порошка субстанции (Индия), красителей – из химических реагентов. Контроль содержания РОЗ в растворе осуществляли спектрофотометрическим методом на приборе УВИ СФ-56 (Россия): Met — 255 нм, Cinn — 250 нм, MO — 460 нм, MC — 661 нм. Степень адсорбции РОЗ (R, %) оценивали по убыли из раствора:

$$R, \% = \frac{\left(c_{\text{Haq}} - c_{\text{OCT}}\right)}{c_{\text{Haq}}} 100,$$
 (3)

где $c_{\text{нач.}}$ и $c_{\text{ост.}}$ — начальная и остаточная концентрации PO3 в растворе.

Методика фотокаталитического эксперимента: навеску композита массой 100 мг помещали в кварцевый стакан емкостью 100 мл и заливали 10 мл исследуемого раствора PO3, затем добавляли с помощью дозатора 0.1 мл 0.1 М $\rm H_2O_2$. Стакан закрывали и ставили на магнитную мешалку, расположенную перед источником излучения. Исходные концентрации растворов были такими же, как в адсорбционном эксперименте. Степень окислительной деградации (R, %) оценивали по формуле (3).

Для оценки стабильности композитов в процессах фотокаталитической деградации РОЗ проводили повторные опыты: после эксперимента отделяли раствор от композита декантацией и приливали свежую порцию раствора.

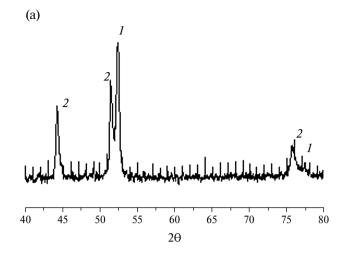
Адсорбционные и фотокаталитические эксперименты проводили при комнатной температуре $(20-24 \, ^{\circ}\mathrm{C})$.

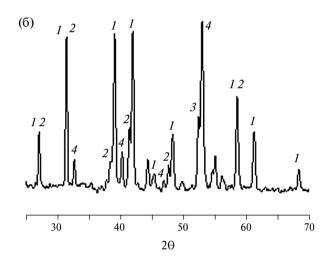
В качестве источника УФ-излучения использовали ртутную лампу высокого давления типа ДРЛ-250 с наиболее интенсивной линией при 254 нм.

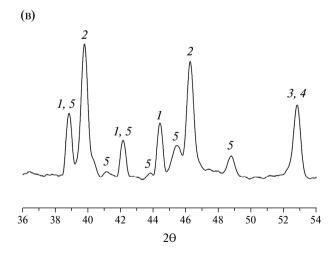
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Аббревиатура исследуемых образцов отражает основные фазы керамических матриц. Фрагменты рентгенограмм композитов представлены на рис. 1. Керамическая матрица каждого образца включает различные композиции нитридов (табл. 2),

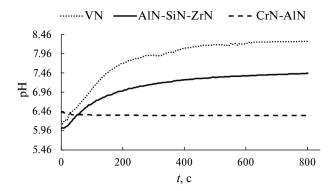
Таблица 2. Фазовый состав и содержание железа (ат. %) в разных локальных областях поверхности композитов по результатам MPCA

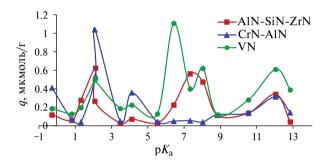

Композит/(ат. % Fe)	Фазовый состав	Карта pdf 4	
VN (15–19)	α-Fe VN	[96–901–6507] [78–13–15]	
CrN-AlN (0.4–2.0)	AlN α-Fe CrN (CrFe) _{2n-x}	[96–901–1658] [96–901–6507] [65–28–99] [19–330]	
AlN-SiN-ZrN (0.5–18)	β-Si3N4 α-Fe FexSiy AlN ZrN	[39-100-1250] [96-901-6507] [96-901-5111] [96-901-1658] [78-14-20]	


которые являются широкозонными полупроводниками, что может обеспечивать оптическую активность их матрицам в условиях облучения УФ- и видимым светом. Фаза металлического железа является продуктом синтеза.


В табл. 2 также приведены результаты оценки содержания железа в разных локальных областях поверхности композитов. По результатам локального MPCA видно, что большее содержание железа и его более равномерное распределение наблюдается на поверхности композита VN. Это свидетельствует о более глубоком и равномерном протекании процесса синтеза и является перспективным для создания в растворе при внесении H_2O_2 фотоактивной каталитической системы фото-Фентона.

Каталитическая активность композитов зависит от поверхностных кислотно-основных центров, которые определяют их реакционную способность и избирательность адсорбции РОЗ. Для установления принадлежности поверхностных центров к гидратированному (бренстедовскому) или апротонному (льюисовому) типу была проведена оценка интегральной кислотности поверхности методом рН-метрии.


На рис. 2 представлены кинетические кривые исследуемых композитов. Видно, что для композитов VN и AIN-SiN-ZrN характерно плавное изменение рН в слабоосновную область, что указывает на присутствие уже гидроксилированных бренстедовских центров и слабоосновное состояние поверхности. Кислотность суспензии композита CrN-AIN не изменяется во времени и близка к рН деионизованной воды. Это может быть следствием того, что соотношение кислотных



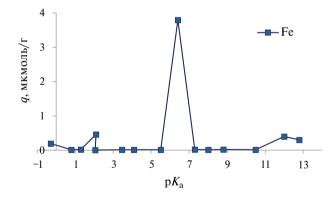

Рис. 1. Фрагменты рентгенограмм композитов: а – VN (I – VN, 2 – α -Fe); б – CrN-AlN (I – AlN, 2 – CrN, 3 – (CrFe)_{2n-x} 4 – α -Fe); в – AlN-SiN-ZrN (I – AlN, 2 – ZrN, 3 – α -Fe, 4 – FeSi, 5 – Si $_3$ N $_4$).

Рис. 2. Кинетические кривые изменения рН водных суспензий композитов во времени.

Рис. 3. Кривые распределения кислотно-основных центров адсорбции индикаторов Гаммета на поверхности композитов на основе нитрида хрома, ванадия и алюминия.

Рис. 4. Кривые распределения кислотно-основных центров адсорбции индикаторов Гаммета на поверхности металлического железа.

Таблица 3. Функции кислотности поверхности

Образцы	CrN-AlN	VN	AlN-SiN-ZrN	Fe
H_0	4.14	6.38	5.81	5.16

и основных центров на поверхности данного композита аналогично pH воды (соотношению концентраций водородных и гидроксильных ионов). При этом динамические процессы обмена в системе практически не приводят к изменению pH суспензии.

Для установления количества центров определенной кислотно-основной силы строили кривые распределения концентрации поверхностных активных центров с определенным значением pK_a , используя большой рабочий набор красителей-индикаторов Гаммета (табл. 1). Из данных, представленных на рис. 3 следует, что на поверхности композита CrN-AlN доминируют апротонные основные центры Льюиса и сильнокислотные центры Бренстеда (pK_a 2.01, 4.1). Поверхность образца на основе нитрида ванадия VN имеет наибольший набор сильнокислотных и слабокислотных центров Бренстеда.

Для идентификации поверхностных активных центров композитов было исследовано металлическое (карбонильное) железо (рис. 4), моделирующеее фазу металлического железа в исследуемых образцах.

Видно, что металлическое железо образует на своей поверхности главным образом слабокислотный центр с рKа 6.4. При исследовании водной суспензии ферросилиция было показано [17], что поверхностное железо окисляется растворенным кислородом до ионов Fe^{2+} и Fe^{3+} , которые в нейтральной и слабощелочной средах гидролизуются с образованием соответствующих гидроксидов. Далее гидроксиды кристаллизуются в оксиды. Кремний же существует в устойчивой форме монокремниевой кислоты. При исследовании поверхностных активных центров оксида железа(III) авторами [18] также обнаружены преимущественно слабокислотные бренстедовские центры (р K_a 0-7), которые образуются в результате полной или частичной гидратации железа.

Полученные значения функции кислотности поверхности исследуемых материалов, рассчитанные по уравнению (2), подтверждают их слабокислотный характер (табл. 3).

По результатам настоящей работы и литературным данным [17, 18] были идентифицированы поверхностные центры исследуемых композитов (табл. 4). В табл. 5 приведены результаты оценки адсорбционной активности образцов по отношению к исследуемым органическим загрязнителям. Предварительно было установлено, что максимальная адсорбция всех РОЗ достигается в течение 20 мин. Метамизол характеризуется сильнокислотными свойствами [19] (р $K_{al} = 0.21$) и может адсорбироваться на основных центрах Льюиса (р K_a \sim 0). Метамизол также имеет слабокислотные группы (р $K_{a2} = 5.06$), которые обусловлены наличием не

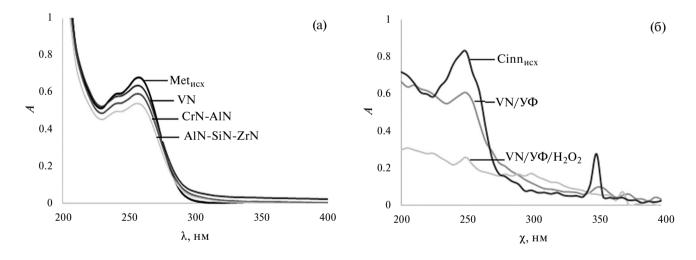

Фазы композитов	CrN, VN, AIN,	CrN, AlN,	CrN, AlN,	CrN, VN, AIN,	AlN, ZrN,
	ZrN, Si ₃ N ₄	Si ₃ N ₄	Si ₃ N ₄ , α-Fe	ZrN, Si ₃ N ₄	α-Fe
Функциональные группы (ФГ)	≡N:	CrOH-Hδ ⁺ AlOH-Hδ ⁺ SiO-Hδ ⁺	Fe ₂ O ₃ ·H ₂ O Si(OH) ₄	=N: H ⁻ OH	Al ³⁺ , Fe ³⁺
pK_a	-1	0 6	<u> </u>	7 1	4
Кислотно-основные	Основания	Центры Бр	Кислоты		
центры	Льюиса		Льюиса		

Таблица 4. Поверхностные активные центры исследуемых композитов

Таблица 5. Степень адсорбции (R, %) РОЗ-композитами

Образец	R, %					
	Met	Cinn	MC	МО		
VN	7.3 ± 0.5	31.3 ± 2.1	23.4 ± 1.6	19.6 ± 1.3		
CrN-AlN	33.1 ± 2.4	21.0 ± 1.5	45.1 ± 3.2	3.4 ± 0.3		
AlN-SiN-ZrN	17.2 ± 1.3	27.2 ± 1.9	21.3 ± 1.8	4.6 ± 0.4		

Примечание. Погрешность результатов не превышает 10%; $c_{\rm Met} = 25$ мг/л, $c_{\rm Cinn} = 12.5$ мг/л, $c_{\rm MO} = 10$ мг/л, $c_{\rm MC} = 5$ мг/л, $m_{\rm kt} = 100$ мг, $v_{\rm p-pa} = 10$ мл, $\tau = 20$ мин, T = 22°C.

Рис. 5. Электронные спектры поглощения: а — раствора метамизола до и после адсорбции, б — раствора циннаризина до и после фотокаталитического эксперимента.

поделенной пары электронов замещенного атома азота пиразольного кольца и его протонированием. Вследствие этого он может адсорбироваться и на кислотных центрах Бренстеда с $pK_a \sim 5$.

Адсорбционная активность всех композитов по отношению к метамизолу невысока (7—33%), что хорошо иллюстрируется электронными спектрами поглощения (рис. 5а). Это обусловлено небольшим количеством соответствующих кислотно-основных центров. Наибольшая степень адсорбции

метамизола на композите CrN-AlN коррелирует с количеством основных центров Льюиса с $pK_a \sim 0$.

Учитывая кислотно-основную природу функциональных групп на поверхности металлокерамических композитов и метамизола, предложен механизм процесса адсорбции:

$$/N: + C_{13}H_{16}ON_3SO_3H \rightarrow$$

 $\rightarrow /N:^{----}HO_3SN_3OC_{13}H_{16},$
(4)

Образец	Степень деструкции, %							
]	Met	Cinn		MC		MO	
	УФ	УФ/H ₂ O ₂	УФ	УФ/H ₂ O ₂	УФ	УФ/H ₂ O ₂	УФ	УФ/Н ₂ О ₂
VN	44	74	58	96	41	58	38	64
CrN-AlN	56	63	54	81	54	69	11	17
AlN-SiN-ZrN	24	60	60	89	34	48	14	46
Без композита	6	12	28	46	23	36	~0	11

Таблица 6. Степень окислительной деструкции (%) PO3 в присутствии исследуемых композитов в отсутствии и с добавкой H_2O_2 при УФ-облучении

Примечание. Погрешность результатов не превышает 10%; $c_{\mathrm{Met}} = 25$ мг/л, $c_{\mathrm{Cinn}} = 12.5$ мг/л, $c_{\mathrm{MO}} = 10$ мг/л, $c_{\mathrm{MC}} = 5$ мг/л, $m_{\mathrm{kt}} = 100$ мг, $v_{\mathrm{p-pa}} = 10$ мл, $\tau_{\mathrm{V}\Phi} = 20$ мин, $T = 22^{\circ}\mathrm{C}$.

$$/SiO - H^{d+} + [C_{13}H_{16}ON_3SO_3]^- \rightarrow$$

$$\rightarrow /SiO - H^{\dots}[C_{13}H_{16}ON_3SO_3],$$
(5)

Циннаризин (Cinn) — производное дифенилпиперазина, содержит в своем составе два третичных атома азота, придающих веществу слабоосновные свойства. Циннаризин может адсорбироваться на основных центрах Бренстеда (р $K_a = 7.4$ [20]), которые преобладают на поверхности композитов VN и AlN-SiN-ZrN. Адсорбция Cinn (табл. 5) коррелирует с количеством основных центров Бренстеда и может быть представлена реакцией:

=N:
$$H^{\delta+}$$
 + $Cinn^{\delta-}$ \rightarrow =N: H^{\cdots} Cinn. (7)

Краситель МС является сильной кислотой (р $K_a = -1.23$ [16]), поэтому его адсорбция согласуется с количеством основных центров Льюиса и максимальна для композита CrN-AlN. Метиловый оранжевый — слабая кислота (р $K_a = 3.56$) и может адсорбироваться на сильнокислотных центрах Бренстеда. Центры адсорбции с р $K_a \sim 3.5$ наблюдаются только на поверхности композита VN, что объясняет его адсорбционную активность к красителю. Адсорбция МО на остальных композитах практически отсутствует.

Таким образом, механизм процесса адсорбции МС (р $K_a = -1.23$):

/N:
$$H^+ + Ind^- \rightarrow /N$$
: $H^{----}Ind$, (8)
| OH OH

адсорбции МО (р $K_a = 3.56$ [16]):

$$/\text{CrOH} - \text{H}^{d+} + \text{Ind}^{-} \rightarrow /\text{CrOH} - \text{H}^{\dots} \text{Ind}, (9)$$

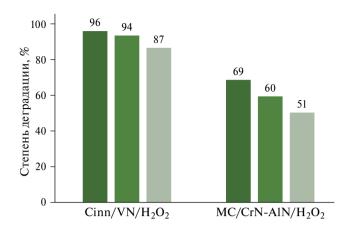
$$/AIOH - H^{d+} + Ind^{-}/AIOH - H^{....}Ind,$$
 (10)

$$/\text{SiO} - \text{H}^{d+} + \text{Ind}^- \rightarrow /\text{SiO} - \text{H}^{\dots} \text{Ind}.$$
 (11)

Корреляция адсорбционной активности композитов к исследуемым РОЗ с природой и количеством кислотно-основных активных центров на поверхности катализаторов указывает на то, что преобладает процесс хемосорбции.

В табл. 6 представлены результаты оценки фотокаталитической активности композитов в процессе окислительной деструкции исследуемых поллютантов при УФ-облучении. С целью создания в растворе условий для гомогенной каталитической системы фото-Фентона проводили эксперимент с добавкой Н₂О₂. Также приведены данные степени деструкции исследуемых РОЗ при УФ-облучении в отсутствии и с добавкой H_2O_2 без композита ("холостой опыт"). Сопоставление результатов "холостого опыта" с данными фотокаталитического эксперимента указывает на участие композитов в процессе. Сравнение степени деградации РОЗ при воздействии УФ-облучения в отсутствие реагента-активатора со степенью адсорбции (табл. 5) свидетельствует об участии керамической матрицы композитов в процессе окислительной деструкции загрязнителей по механизму гетерогенного фотокатализа. Наблюдается корреляция фотокаталитической и адсорбционной активности катализаторов практически для всех РОЗ, за исключением, метамизола. Так, несмотря на значительное различие результатов адсорбции метамизола композитами VN и CrN-AlN, степень их фотокаталитической окислительной деструкции сопоставима. Возможно, адсорбция не является лимитирующей стадией в процессе фотокаталитической деградации метамизола в присутствии исследуемых композитов.

Степень окислительной деструкции РОЗ в целом согласуется с их фотохимической устойчивостью. Так, по результатам "холостых" опытов наименьшей устойчивостью обладают циннаризин и МС, которые в отсутствии композитов и H_2O_2 разрушаются на 23-28%, в то время, как МО устойчив при УФ-облучении. Степень деструкции РОЗ в "холостых" опытах с добавкой H_2O_2 заметно возрастает вследствие фотолиза H_2O_2 , приводящего к генерации двух 'ОН-радикалов [21]. Однако эффективность преобразования H_2O_2 в 'ОН радикалы составляет менее 10% из-за низкого молярного коэффициента поглощения H_2O_2 при 254 нм [22].


Добавка H_2O_2 приводит к значительному увеличению степени деградации исследуемых загрязнителей в присутствии всех композитов. При частичном растворении металлического железа с поверхности образцов в растворе в присутствии H_2O_2 создаются условия для протекания процесса Фентона, генерирующего гидроксил радикалы [6, 23]. Гомогенная система Фентона — циклическая реакция, которая обладает высокой эффективностью, как возобновляемый источник 'ОН-радикалов. Механизм процесса Фентона с образованием гидроксил радикалов представляют следующим образом:

$$Fe_{aq}^{2+} + H_2O_2 \rightarrow Fe_{aq}^{3+} + HO^{\bullet} + OH^{-},$$
 (12)

$$Fe^{3+}_{aq} + H_2O + hv \rightarrow Fe^{2+}_{aq} + HO^{\bullet} + H^{+}.$$
 (13)

Результаты определения железа (II, III) в воде методом СФ после контакта с композитами при УФ-облучении ($c_{\rm Fe}$, мг/л: VN - 0.114; AIN-SiN-ZrN - 0.086; CrN-AIN - 0.054) свидетельствуют о незначительном растворении металлического железа и при добавке $\rm H_2O_2$ указывают на возможность генерирования 'ОН-радикалов по механизму процесса Фентона. Следует подчеркнуть, что несмотря на сопоставимое содержание железа на поверхности композитов VN и AIN-SiN-ZrN добавка $\rm H_2O_2$ приводит к большему увеличению степени окислительной деструкции PO3 в присутствии образца VN. Так, для циннаризина она составляет 96% (табл. 6, рис. 56). Возможно, это связано с неравномерным распределением железа на поверхности AIN-SiN-ZrN (0.5–18%) по сравнению с VN (15–19%).

Проведена оценка стабильности композитов, проявляющих наибольшую активность в процессах окислительной деструкции исследуемых РОЗ. Для этого протестировали в трех повторных циклах процесс деградации циннаризина в системе VN/ H_2O_2 и красителя МС в присутствии CrN-AlN/ H_2O_2 (рис. 6). Установлено, что при повторном использовании композита VN степень деградации циннаризина при УФ-облучении изменяется незначительно. Это может быть связано с большим

Рис. 6. Степень деградации циннаризина и метиленового синего в присутствии композитов VN и CrN-AlN в трех повторных циклах.

содержанием металлического железа в образце VN, поддерживающего высокую активность гомогенного фотокатализа. Для композита CrN-AlN в присутствии H_2O_2 наблюдается большее снижение степени деградации метиленового синего в повторных циклах при УФ-облучении. По-видимому, меньшее содержание железа в керамической матрице образца CrN-AlN заметно выщелачивается, снижая активность процесса Фентона.

Таким образом, высокая степень окислительной деструкции растворимых органических поллютантов с применением железосодержащих металлокерамических композитов обусловлена их адсорбционными свойствами и возможностью совмещения гетерогенного фотокатализа и процесса Фентона.

ЗАКЛЮЧЕНИЕ

Методом рН-метрии проведена интегральная оценка кислотно-основных свойств поверхности железосодержащих металлокерамических композитов на основе нитридов ванадия, хрома и алюминия. Равновесное значение рН водной суспензии образцов VN и AlN-SiN-ZrN указывает на слабоосновное состояние поверхности композитов. Кислотность суспензии композита CrN-AIN близка к рН деионизованной воды и является следствием аналогичного воде соотношения кислотных и основных центров. Индикаторным методом со спектрофотометрической индикацией проведена идентификация и количественная оценка поверхностных центров различной кислотности. На поверхности композита CrN-AlN доминируют апротонные основные центры Льюиса (р $K_a - 0.29$) и сильнокислотные центры Бренстеда (р K_a 2.01, 4.1), поверхность образца VN имеет наибольший набор кислотных центров Бренстеда (р K_a 1.3-5.5). Установленная корреляция адсорбционной

активности композитов к исследуемым органическим загрязнителям (метамизол, циннаризин, метиленовый синий, метиловый оранжевый) с природой и количеством активных центров на поверхности материала указывает на процесс их хемосорбции. Предложены механизмы процессов. Показано, что железосодержащие металлокерамические композиты являются перспективными фотокатализаторами для процессов окислительной деструкции растворимых органических поллютантов (64–96%) в условиях УФ-облучения. Высокая активность обусловлена адсорбционными свойствами композитов и совмещением гетерогенного фотокатализа и гомогенного процесса Фентона.

Данная работа финансировалась за счет средств бюджета Национального исследовательского Томского государственного университета и государственного задания ФГБУН Томского научного центра СО РАН (проект № 121031800148-5).

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ince N.H., Stefan M.I., Bolton J.R.* // J. of Advanced Oxidation Technologies. 1997. V. 2. № 3. P. 442.
- Nunes M.J., Lopes A., Pacheco M.J, et. al. // Materials. 2022. V. 15. P. 2465. https://doi.org/10.3390/ma15072465.
- 3. *Masunga N., Mamba B.B., Kefeni K.K.* // J. Water Process Eng. 2022. V. 48. https://doi:10.1016/j.jwpe.2022.102898.
- Guo R. T., Wang J., Bi Z.X., et. al. // Chemosphere. 2022. V. 295. P. 133834. https://doi:10.1016/j.chemosphere.2022.133834.
- 5. *Zhang F.B., Wang X.M., Liu H.N., et. al.* // Appl. Sci. 2019. № 9. P. 2489. https://doi:10.3390/app9122489
- Bacardit J., Stotzner, J., Chamarro E. // Ind. Eng. Chem. Res. 2007. V. 46. P. 7615. http://doi.org/10.1021/ie0701540
- Chong M.N., Jin B., Chow C.W.K., et. al. // Water Res. 2010. V. 44. P. 2997.
- 8. Скворцова Л.Н., Казанцева К.И., Болгару К.А., и др. // Неорган. материалы. 2023. Т. 59. № 3. С. 333. [Skvortsova L.N., Kazantseva K.I., Bolgaru K.A., et. al. // Inorgan. Materials. 2023. V. 59. № 3. P. 321.] https:// DOI: 10.1134/S0020168523030123

- 9. *Скворцова Л.Н., Чухломина Л.Н., Баталова В.Н.* // Журн. прикл. химии. 2014. Т. 87. № 11. С. 136. [*Skvortsova L.N., Chuklomina L.N., Batalova V.N.* // Rus. J. Appl. Chem.. 2014. V. 87. № 11. Р. 1649.] https://doi.org/ 10.1134/S1070427214110196.
- 10. Sherstoboeva M.V., Bavykina A.V., Bolgaru K.A., et al. // J. ChemistrySelect. 2020. № 5. P. 1912. https://doi.org/ 10.1002/slct.201904010
- 11. *Скворцова Л.Н., Болгару К.А., Шерстобоева М.В. и др.* // Журн.физ.химии. 2020. Т. 94. № 6. С. 926. [*Skvortsova L.N., Bolgaru K.A., Sherstoboeva M.V., et. al.* // Russ. J. Phys. Chem. A. 2020. V. 94. № 6. P. 1248.] https://DOI: 10.31857/S0044453720060242
- 12. *Минакова Т.С.* Адсорбционные процессы на поверхности твердых тел. Томск: Изд-во Том. ун-та, 2007. 284 с.
- 13. *Слижов Ю.Г., Матвеева Т.Н., Минакова Т.С. //* Журн. физ. химии. 2012. Т. 86. № 3. С. 463 [*Slizhov Yu.G., Matveeva T.N., Minakova T.S. //* Russ. J. Phys. Chem. A. 2012. V. 86. № 3. Р. 463.] https://doi.org/10.1134/S0036024412030272
- 14. *Танабе К*. Твердые кислоты и основания. М.: Мир, 1973. 183 с.
- 15. *Нечипоренко А.П., Кудряшова А.И.* // Журн. прикл. химии. 1987. Т. 60. № 9. С. 1957.
- 16. *Нечипоренко А.П.* Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. СПб.: Лань, 2017. 2843 с.
- 17. Двойченкова Г.П., Тимофеев А.С., Чернышева Е.Н. и др. // ГИАБ. 2015. № 9. С. 41.
- 18. *Карпова С.С., Мошников В.А., Мякин С.В. и др. //* Физика и техника полупроводников. 2013. Т. 47. № 3. С. 369.
- 19. https://drugcentral.org/drugcard/4659?q=metamisol
- Terland O., Flatmark T. // Neuropharmacology. 1999.
 V. 38. № 6. P. 879.
 https://doi:10.1016/s0028-3908(98)00233-0
- 21. *Deng J., Xu M.Y., Chen Y.J., et al.* // Chem. Eng. J. 2019. V. 366. P. 491. https://doi.: 10.1016/j.cej.2019.02.073.
- 22. *Miklos D.B.*, *Remy C.*, *Jekel M.*, *et al.* // Water Res. 2018. V. 139. P. 118. https:// doi.: 10.1016/j.watres.2018.03.042.
- 23. *Wadley S., Waite T.D.* Fenton processes-advanced oxidation processes for water and wastewater treatment. IWA Publishing: London. 2004. P. 111.