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При предсказании индексов удерживания с помощью глубокого обучения обычно нет способа 
оценить надежность предсказания для конкретной молекулы. В данной работе на примере не-
подвижных фаз на основе полиэтиленгликоля и базы данных NIST 17 показано, что в среднем 
предсказание тем точнее, чем более близкая по структуре к соединению, для которого выпол-
няется предсказание, молекула находилась в обучающем наборе данных. Сходство по Танимото 
“молекулярных отпечатков пальцев” ECFP – наиболее подходящий для этой задачи алгоритм 
вычисления молекулярного подобия из четырех рассмотренных. Показано, что для ряда продук-
тов трансформации несимметричного диметилгидразина, структура которых была установлена 
с использованием такого предсказания, оно могло быть весьма ненадежным.
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ВВЕДЕНИЕ

Время удерживания в газовой хроматографии 
зависит от скорости потока газа-носителя, геоме-
трических параметров хроматографической колон-
ки, температурной программы и других факторов. 
В то же время индекс удерживания [1], характери-
зующий время удерживания вещества относитель-
но времен удерживания н-алканов, зависит глав-
ным образом от структуры удерживаемого соеди-
нения и химической природы неподвижной фазы 
[1–3]. Таким образом, задача предсказания индек-
са удерживания для данной молекулы и данной не-
подвижной фазы – это задача предсказания одного 
единственного числа по структуре молекулы.

При хромато-масс-спектрометрическом анали-
зе сложной смеси, содержащей неизвестные ком-
поненты, предположение о структуре неизвестно-
го соединения делается на основе масс-спектра, 
наиболее часто с помощью библиотечного поиска 
[4, 5]. Однако библиотечный поиск часто приводит 
к неверному результату, даже если рассматривае-
мое соединение содержится в базе данных [6]. В тех 
случаях, когда определяемые соединения в базах 
данных отсутствуют, задача становится еще более 

сложной [7]. Однако сопоставление наблюдаемого 
индекса удерживания с предсказанным с помощью 
машинного обучения позволяет отбросить невер-
ных кандидатов [6, 8, 9] и подтвердить предвари-
тельную идентификацию [9–12]. Использование 
индексов удерживания существенно повышает 
надежность идентификации [6, 9]. Эксперимен-
тальные данные об индексах удерживания доступ-
ны лишь примерно для ста тысяч молекул [13], 
что в несколько раз меньше, чем количество мо-
лекул, для которых доступны экспериментальные 
масс-спектры, и на несколько порядков меньше, 
чем общее количество известных молекул. Таким 
образом, предсказание индексов удерживания – 
важная задача для современной химии.

Глубокое обучение, т. е. совокупность стати-
стических методов, основанных на глубоких ней-
ронных сетях, произвело революцию во многих 
областях науки и техники в последние годы. Глу-
бокие нейронные сети используются для самых 
разных задач от аналитической химии [14] до за-
дач машинного зрения и машинного перевода [15]. 
В частности, глубокое обучение применяется для 
предсказания газохроматографических индексов 
удерживания [13, 16–20] по структуре молекулы. 

ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ
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В последние годы был разработан целый ряд моде-
лей такого типа [18]. Глубокое обучение существен-
но превосходит по точности ранее применявшие-
ся модели [16, 17]. В целом ряде работ [9–12] такие 
предсказанные индексы удерживания используют-
ся для уточнения идентификации.

Оценка точности моделей предсказания индек-
сов удерживания проводится с  использованием 
больших наборов данных и рассчитывается “сред-
няя” метрика точности для всего набора данных 
[16–20] (например, среднеквадратичное или сред-
нее абсолютное отклонение). Однако это совер-
шенно не позволяет оценить, является ли точным 
предсказание для конкретной отдельно взятой мо-
лекулы. В некоторых работах точность рассчиты-
вается для отдельных классов соединений [18, 19], 
однако и в этом случае классы (например, “аро-
матические соединения”, “триметилсилильные 
производные”) являются достаточно широкими 
и включают в себя самые разные молекулы. В связи 
с этим актуальна разработка способов, с помощью 
которых можно оценить, является ли надежным 
предсказание индекса удерживания для данной 
конкретной молекулы, т. е. способов оценить, мож-
но ли доверять данному предсказанию. Использо-
вание предсказанных индексов удерживания может 
привести к  неверным результатам, если именно 
для рассматриваемых молекул предсказание весьма 
ненадежно. Недавно для этой задачи был разрабо-
тан подход, использующий сравнение между собой 
предсказаний, сделанных с помощью нескольких 
независимых моделей [21].

Существуют различные методы количествен-
ной оценки того, насколько структуры двух моле-
кул близки между собой, т. е. оценки молекулярно-
го подобия [22–25]. При этом, в частности, может 
использоваться сходство так называемых “молеку-
лярных отпечатков пальцев” [25] (двоичных векто-
ров, каждый бит которых показывает, содержится 
ли в молекуле тот или иной фрагмент), а также на-
хождение общего подграфа между двумя молекула-
ми [22].

Целью данной работы является изучение того, 
как молекулярное подобие между молекулой, для 
которой выполняется предсказание индекса удер-
живания с помощью глубокого обучения, и моле-
кулами, содержащимися в обучающем наборе дан-
ных, использованном для обучения модели, влия-
ет на точность предсказания индекса удерживания. 
Данное исследование выполняется на примере ин-
дексов удерживания для полярных неподвижных 
фаз (тип “Standard polar” в базе данных NIST; по-
лиэтиленгликоль и приблизительно эквивалентные 
по хроматографическому поведению полимеры на 
его основе) и ранее опубликованной модели глубо-
кого обучения, встроенной в программное обеспе-
чение SVEKLA [9, 16]. Также целью данной работы 
является предварительная оценка того, являются 

ли надежными предсказания индексов удержива-
ния, сделанные в работе [9] и использованные для 
построения структуры новых продуктов транcфор-
мации несимметричного диметилгидразина.

МЕТОДЫ

Набор данных и модель глубокого обучения

В качестве набора данных использовалась база 
данных NIST 17. Процедура обработки и подго-
товки данных описана в предыдущей работе [16]. 
Набор данных был разбит на 5 наборов случайным 
образом. Обучение моделей было выполнено 5 раз, 
каждый раз 4 набора использовались в качестве об-
учающих, а пятый в качестве тестового. Результаты 
предсказаний для тестовых наборов (соединение, 
для которого выполняется предсказание, каждый 
раз отсутствует в обучающем наборе) были объе-
динены и использованы для дальнейшей работы 
(5-fold кросс-валидация).

Были обучены две модели: одномерная свер-
точная нейронная сеть и глубокий многослойный 
перцептрон. Подробные описания моделей даны 
в работах [13, 16]. При этом использовалось транс-
ферное обучение: сначала нейронные сети обуча-
лись для предсказания индексов удерживания для 
неполярных неподвижных фаз, а затем получен-
ные веса нейронных сетей использовались в каче-
стве начальных значений для обучения модели для 
предсказания индексов удерживания для неполяр-
ных неподвижных фаз. Молекулы, входящие в те-
стовый набор, каждый раз удалялись и из набора 
данных о индексах удерживания для неполярных 
неподвижных фаз, использованных для обучения. 
Таким образом, не происходило “утечки данных”, 
то есть молекулы, использованные для тестиро-
вания, не использовались на обучении ни на ка-
ком этапе. Подробно процедура обучения описана 
в предыдущей работе [16].

База данных NIST 17 содержит по несколько за-
писей данных для каждой из молекул. При обуче-
нии и тестировании использовались все эти записи 
(они отличаются тем, какая именно хроматографи-
ческая колонка использовалась, а также условия-
ми измерения). После выполнения процедуры 
кросс-валидации для каждой записи имеется пара 
значений: экспериментальный индекс удержива-
ния и предсказанный с помощью модели, которая 
“не видела” данную молекулу при обучении. При 
этом разбитие исходной базы данных на 5 наборов 
выполнялось так, что все записи для каждой из 
молекул помещались в один из наборов, выбран-
ный случайным образом. Геометрические изомеры 
и стереоизомеры рассматривались как одна моле-
кула. Более подробное описание процедур и алго-
ритмов содержится в ранее опубликованных рабо-
тах [13, 16–17].
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Расчет молекулярного подобия

Исходный набор данных содержал 89086 запи-
сей, каждая из которых содержала структуру мо-
лекулы, референсный и  предсказанный индекс 
удерживания. Для каждой структуры было най-
дено медианное значение референсного индекса 
удерживания. Таким образом был получен набор 
данных, содержащий 9408 записей, состоящих из 
структуры молекулы, референсного и предсказан-
ного значения. Каждая молекула встречается в дан-
ном наборе ровно один раз.

Для каждой молекулы были рассчитаны “моле-
кулярные отпечатки пальцев” (векторы, показы-
вающие наличие тех или иных фрагментов) с по-
мощью алгоритма ECFP [25] (радиус 3, длина век-
тора 1024). Для каждой пары молекул вычислено 
сходство “молекулярных отпечатков пальцев” по 
Танимото:

	 S
N

N N N
,AB

A B AB
=

+ −
	 (1)

где NA, NB – количество ненулевых битов в “моле-
кулярных отпечатках пальцев” каждой из молекул, 
NAB – количество битов, являющихся ненулевыми 
в каждом из двух “молекулярных отпечатков паль-
цев” одновременно. Для каждой молекулы было 
отобрано 100 наиболее близких структур (имеющих 
наибольшее значение молекулярного подобия S), 
входивших в обучающий набор данных при обу-
чении модели, использованной для предсказания 
индекса удерживания для рассматриваемой мо-
лекулы. Затем было рассмотрено четыре способа 
вычисления молекулярного подобия. Для каждого 
из методов получено значение молекулярного по-
добия для молекулы, входившей в обучающий на-
бор данных при обучении модели, использованной 
для предсказания индекса удерживания для рас-
сматриваемой молекулы, и имеющей наибольшее 
значение молекулярного подобия с рассматривае-
мой. Это значение обозначается как Smax. Так как 
эти методы более ресурсоемки, то поиск молекулы 
с наибольшим значением молекулярного подобия 
выполнялся только для 100 предварительно ото-
бранных кандидатов.

Первым методом расчета молекулярного подо-
бия, обозначенным MCS, было вычисление наи-
большего общего фрагмента с помощью библио-
теки RDKit, метод rdFMCS.FindMCS. После на-
хождения этого фрагмента подобие вычислялось 
по формуле, аналогичной уравнению (1):

	 S
M

M M M
,AB

A B AB
=
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	 (2)

где MA, MB – количество атомов каждой из моле-
кул, MAB – количество атомов в наибольшем об-
щем фрагменте. При этом надо отметить, что 

учитывается только тип атомов и структура моле-
кулярного графа. Атомы водорода не учитываются.

Вторым методом было вычисление сходства по 
методу Rascal. При этом также вычисляется наи-
больший общий фрагмент с помощью алгоритма 
Rascal [22] и  рассчитывается количество связей 
и атомов в этом фрагменте. Сходство вычисляется 
по следующему уравнению:

	 S
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M B M B
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где MA, MB – количество атомов каждой из моле-
кул, BA, BB – количество cвязей в каждой из моле-
кул, MAB и BAB – количество атомов и связей в наи-
большем общем фрагменте соответственно. В этом 
методе использовался модуль rdRascalMCES би-
блиотеки RDKit.

Третий и  четвертый методы были обозначе-
ны RDKitFP и  ECFP. В  них вычислялось сход-
ство “молекулярных отпечатков пальцев” по 
формуле (1). Использовались молекулярные де-
скрипторы, рассчитанные с  помощью классов 
GetRDKitFPGenerator и GetMorganGenerator со-
ответственно. Длина вектора рассматривалась 
равной 4096, радиус (для ECFP) принимался рав-
ным 6. Метод ECFP соответствует “круговым мо-
лекулярным отпечаткам пальцев” [25]. Параметр 
maxPath для RDKitFP также принимался равным 6.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Молекулярное подобие и точность 
предсказания индексов удерживания

При осуществлении кросс-валидации исходный 
набор данных (база данных NIST 17) был разбит на 
5 подмножеств. Для каждой молекулы из базы дан-
ных NIST 17, для которой доступно эксперимен-
тальное значение индекса удерживания на поляр-
ной неподвижной фазе, была найдена (четырьмя 
способами) наиболее близкая к ней, т. е. обладаю-
щая наибольшим значением меры молекулярного 
подобия, молекула, входящая в другое подмноже-
ство набора данных. Гипотеза, проверяемая в дан-
ной работе, состоит в том, что молекулярное подо-
бие Smax между молекулой, для которой выполня-
ется предсказание, и наиболее близкой молекулой 
из обучающего набора связано с точностью пред-
сказания.

На рис. 1 показано распределение молекул (ко-
личество молекул в соответствующем интервале 
(бине) обозначено как N) из рассматриваемого на-
бора данных по значению Smax для четырех методов 
расчета молекулярного подобия. Светло-серым по-
казаны молекулы, для которых абсолютная ошиб-
ка предсказания с помощью рассматриваемого ал-
горитма [16] не больше 100, а темно-серым те, для 
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которых абсолютная ошибка предсказания больше 
100. В дальнейшем мы называем такие молекулы 
“плохо предсказываемыми”. Значение 100 было 
использовано в качестве порогового, так как в пре-
дыдущей работе [9] такое значение использовалось 
для отбрасывания ложных кандидатов при анализе 
сложной смеси. Таким образом, если рассматрива-
емая структура-кандидат является “плохо предска-
зываемой”, то она может быть ложно отброшена 
(или наоборот не отброшена) на основании срав-
нения наблюдаемого и предсказанного индексов 
удерживания для полярной неподвижной фазы.

Как видно из рис. 1, при использовании метода 
расчета молекулярного подобия ECFP наибольшее 
число молекул имеет значение Smax около 0.5. Ме-
дианное значение Smax для всех молекул составляет 
0.53 в этом случае. При этом для молекул со значе-
ниями Smax меньше ~0.5 доля “плохо предсказыва-
емых” молекул существенно выше, чем для осталь-
ных. Для метода расчета молекулярного подобия 
RDKitFP медианное значение Smax для всех моле-
кул существенно выше и составляет 0.89. Большин-
ство молекул имеет достаточно высокие значения 
Smax, однако и в этом случае наблюдается аналогич-
ная тенденция: количество “плохо предсказывае-
мых” молекул сокращается с уменьшением Smax су-
щественно медленнее по сравнению с количеством 
всех молекул. Для методов расчета молекулярного 
подобия MCS и Rascal, основанных на сравнении 
молекулярных графов, а не “молекулярных отпе-
чатков пальцев”, тенденция менее выражена. Для 
всех методов расчета молекулярного подобия в об-
ласти самых малых значений Smax большинство мо-
лекул относится к “плохо предсказываемым”.

Видно, что для всех методов, кроме RDKitFP, 
распределение молекул по Smax носит выраженный 
бимодальный характер. Для всех методов есть зна-
чительное количество молекул, для которых в об-
учающем наборе имеется очень похожая молеку-
ла, например, гомолог. В случае алгоритма MCS 

молекулярное подобие между, например, цикло-
гексеном и циклогексаном равно 1.0: одна двой-
ная связь в  цикле игнорируется, так как общий 
подграф, включающий все связи между атомами 
углерода, кроме этой, включает в себя все неводо-
родные атомы. Эта и другие особенности алгорит-
ма приводят к тому, что для ряда весьма различ-
ных по химической природе молекул молекуляр-
ное подобие равно 1.0. Для алгоритма Rascal также 
возможно очень высокое значение молекулярного 
подобия для сильно различающихся по своей при-
роде молекул. Так, например, 1-эйкозанол и эйко-
зановая кислота имеют значение молекулярного 
подобия 0.95, в то время как при использовании 
метода RDKitFP это значение равно 0.52 и при ис-
пользовании ECFP равно 0.39. В то же время ECFP 
дает сходство, равное 1.0, для гомологов, содержа-
щих длинную последовательность атомов углерода, 
например для эйкозанола и докозанола.

На рис. 2 наглядно показано то, как доля “пло-
хо предсказываемых” (средняя абсолютная ошибка 
больше 100) молекул зависит от Smax. Для всех ме-
тодов, кроме MCS, эта доля быстро растет с умень-
шением Smax. Таким образом, маленькие значения 
Smax указывают на то, что, вполне вероятно, пред-
сказание именно для рассматриваемой молекулы 
является весьма неточным. Для всех методов, кро-
ме ECFP, общее количество молекул (также для 
удобства показанное на рис. 2) в соответствующем 
интервале быстро падает с падением значения Smax. 
В целом из рис. 1, 2 видно, что наилучшим алго-
ритмом вычисления молекулярного подобия для 
этой задачи является именно ECFP.

На рис. 1, 2 и в последующих разделах рассма-
тривается, главным образом, доля “плохо предска-
зываемых” соединений, т. е. соединений, абсолют-
ная ошибка предсказания для которых больше 100. 
Тем не менее интересно рассмотреть распределе-
ние ошибок для различных диапазонов Smax. Такие 
распределения абсолютной ошибки показаны на 

Рис. 1. Распределение количества молекул N в базе данных индексов удерживания NIST 17 (полярные неподвижные 
фазы) по значениям Smax (максимальное значение молекулярного подобия для всех пар, включающих в себя рас-
сматриваемую молекулу и молекулы из обучающего набора) для четырех методов расчета молекулярного подобия. 
Темно-серым цветом обозначены “плохо предсказываемые молекулы” (абсолютная ошибка предсказания больше 
100), светло-серым цветом обозначены остальные молекулы.
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рис. 3 для алгоритмов ECFP и RDKitFP. В случае 
ECFP видно, что если Smax > 0.9, то подавляющее 
большинство значений абсолютной ошибки не 
превосходит 50, в то время как для значений абсо-
лютных ошибок более 100 начинают доминировать 
молекулы с Smax < 0.5. Аналогичные закономерно-
сти есть и для алгоритма RDKitFP.

Количественное сравнение методов 
вычисления молекулярного подобия

Если использовать некоторое значение мо-
лекулярного подобия в  качестве порогового, 
то молекулярное подобие можно использовать 
в  качестве простейшего предиктора, характери-
зующего, является ли данная молекула “плохо 

предсказываемой”. При изменении порогового 
значения от 0 до 1, чувствительность предсказания 
(доля выявленных “плохо предсказываемых” моле-
кул среди всех “плохо предсказываемых” молекул) 
будет увеличиваться, а специфичность уменьшать-
ся. Таким образом, можно построить кривую спец-
ифичность-чувствительность (Receiver Operator 
Characteristic, ROC-кривая) [26, 27], характеризу-
ющую надежность данной метрики молекулярного 
подобия при использовании в качестве предикто-
ра. Площадь под данной кривой является [27] ме-
трикой точности такого предиктора.

В табл. 1 показана площадь под кривой для раз-
личных алгоритмов расчета молекулярного подо-
бия. При этом, в  отличие от рис.  1, 2, в  данном 
случае были рассмотрены алгоритмы RDKitFP 

Рис. 2. Зависимость общего количества молекул N (сплошные круги и линии) и доли “плохо предсказываемых 
молекул” (абсолютная ошибка предсказания больше 100) F (прямоугольники) от значения Smax (максимальное зна-
чение молекулярного подобия для всех пар, включающих в себя рассматриваемую молекулу и молекулы из обуча-
ющего набора).

Рис. 3. Распределение количества молекул N по абсолютной ошибке предсказания для различных значений Smax 
(максимальное значение молекулярного подобия для всех пар, включающих в себя рассматриваемую молекулу 
и молекулы из обучающего набора) для двух методов расчета молекулярного подобия.
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и  ECFP с  различными значениями параметров 
maxPath и  radius. В  табл.  1 приведены значения 
площади под кривой для различных значений этих 
параметров. Параметры maxPath (“молекулярные 
отпечатки пальцев” RDKitFP) и radius (“молеку-
лярные отпечатки пальцев” ECFP) характеризуют 
размер субструктур, которым соответствуют биты 
“молекулярного отпечатка пальца”. Чем выше 
значения этих параметров, тем более крупные суб-
структуры рассматриваются.

Из табл. 1 видно, что лучше всего для рассма-
триваемой цели подходит алгоритм ECFP, при-
чем зависимости от параметра radius практически 
нет. Алгоритм RDKitFP (при значениях параметра 
maxPath 6 и выше) дает худшие результаты. Осталь-
ные алгоритмы дают ненадежные результаты. Надо 
отметить, что значение площади под кривой 0.5 со-
ответствует случайному классификатору, значение 
1 – идеальному классификатору [26]. Значение 0.7 
иногда рассматривается как наименьшее прием-
лемое [27]. ROC-кривые для алгоритмов расчета 
молекулярного подобия, основанных на “молеку-
лярных отпечатках пальцев”, приведены на рис. 4. 
Видно, что RDKitFP со значением параметра 
maxPath = 3 не дает удовлетворительной точности, 
а ECFP превосходит RDKitFP.

Надежность идентификации ряда 
азотсодержащих соединений

Несимметричный диметилгидразин (НДМГ) – 
токсичное соединение, используемое в качестве 
ракетного горючего. При неконтролируемом хра-
нении и попадании в окружающую среду это со-
единение образует множество продуктов транс-
формации [9, 12, 28], многие из которых не менее 
токсичны, чем сам НДМГ [12]. Исследование про-
дуктов трансформации НДМГ  – важная задача. 
Структуры большинства продуктов трансформа-
ции до сих пор неизвестны [9]. Различные методы 
хромато-масс-спектрометрии используются для 
предварительного определения структур продук-
тов трансформации НДМГ в сложных смесях. Не-
давно была опубликована работа [9], в которой для 
подтверждения структур неизвестных продуктов 
трансформации НДМГ использовалось в том числе 
предсказание индексов удерживания на полярной 
неподвижной фазе. Если различие между наблю-
даемым и предсказанным индексом превосходило 
100, то структура-кандидат отбрасывалась.

Суммарно 1754 из 9408 (19%) молекул в набо-
ре данных являются “плохо предсказываемыми”. 
Однако, среди молекул, у которых Smax < 0.5 (ал-
горитм ECFP), 31% являются “плохо предсказы-
ваемыми”. В табл. 2 показано количество “плохо 
предсказываемых” молекул для различных диапа-
зонов Smax и значения средних и медианных абсо-
лютных ошибок для этих диапазонов. Значения 

ошибок в табл. 2 отличаются от таковых в преды-
дущей работе [16], где использовалась точно такая 
же модель, в связи с тем, что в прошлой работе [16] 
ошибки вычислялись для всех записей базы данных 
NIST, а в этой работе данные были предваритель-
но усреднены по всем записям для каждого соеди-
нения. Таким образом, значительно уменьшился 
вклад в среднюю абсолютную ошибку тех соеди-
нений, для которых в базе данных NIST много за-
писей, так как если для соединения имеется много 
записей, то для каждой записи вычисляется модуль 
ошибки и все эти значения (для каждой из записей 

Рис. 4. ROC-кривые (кривые специфичность-чув-
ствительность) для предсказания того, является ли 
молекула “плохо предсказываемой” (абсолютная 
ошибка предсказания больше 100) с помощью раз-
личных алгоритмов вычисления молекулярного по-
добия. Кривые для алгоритмов, для которых пло-
щадь под кривой отличается не более чем на 0.02, 
обозначены одним типом линии для читабельности.

Таблица 1. Площадь под ROC-кривой при исполь-
зовании различных метрик молекулярного подобия 
в  качестве предиктора того, является ли молекула 
“плохо предсказываемой”

Метод Площадь под кривой

RDKitFP (maxPath = 3) 0.62
RDKitFP (maxPath = 6) 0.69
RDKitFP (maxPath = 12) 0.70
RDKitFP (maxPath = 15) 0.69

ECFP (radius = 3) 0.72
ECFP (radius = 6) 0.72
ECFP (radius = 12) 0.72

MCS 0.55
Rascal 0.61
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для всех соединений) усредняются. Средняя абсо-
лютная ошибка это частное суммы модулей оши-
бок и количества записей или молекул. В данной 

работе каждому соединению соответствует одно 
слагаемое в сумме модулей ошибок, в отличие от 
работы [16]. Было отмечено, что большая часть 

Таблица 2. Количество “плохо предсказываемых” молекул и метрики точности для различных диапазонов Smax 
(алгоритм ECFP)

Диапазон
“Плохо 

предсказываемые” 
молекулы

Всего 
молекул

Доля “плохо 
предсказываемых” 

молекул, %

Средняя 
абсолютная 

ошибка

Медианная 
абсолютная 

ошибка

Все молекулы 1754 9408 18.6 70.6 28.4
Smax > 0.7 83 1419 5.8 25.8 8.3
Smax > 0.5 512 5239 9.8 41.7 15.9
Smax < 0.5 1168 3820 30.6 109.9 57.0
Smax < 0.3 280 583 48.0 173.6 95.4
Smax < 0.2 50 30 60 311.0 181.7

Рис. 5. Структуры продуктов трансформации несимметричного диметилгидразина, предложенные в работе [9], 
и значения Smax (величина молекулярного подобия между рассматриваемой молекулой и наиболее близкой моле-
кулой из обучающего набора) для каждой из них. Метод расчета молекулярного подобия ECFP.
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соединений, для каждого из которых база данных 
NIST содержит множество записей, имеют отно-
сительно простую структуру и в среднем предска-
зания для таких соединений точнее по сравнению 
со всеми соединениями. В базе данных NIST боль-
шинству структур соответствует ровно одна запись, 
однако для части структур (например такие моле-
кулы как бензол и этанол) база данных содержит 
много записей. Разница в подходе к вычислению 
средней абсолютной ошибки приводит к разнице 
значений, приведенных в работе [16] и в табл. 2.

На рис. 5 показаны структуры, предложенные 
[9] в качестве структур продуктов трансформации 
НДМГ с использованием предсказания индексов 
удерживания на полярной неподвижной фазе. Для 
каждой из структур показано молекулярное подо-
бие (алгоритм ECFP) с наиболее близкой структу-
рой из базы данных NIST. Две структуры содержат-
ся в базе данных NIST, для них это значение равно 
1.0. Для остальных структур это значение не пре-
восходит 0.5. Для ряда структур это значение даже 
меньше 0.2. Таким образом, нельзя быть уверен-
ным в том, что такие предсказания приводят к вер-
ным результатам, и к представленным результатам 
следует относиться с осторожностью. Тем не менее 
структуры, подтвержденные с помощью несколь-
ких методов хромато-масс-спектрометрии (газовой 
и жидкостной) и нескольких методов машинного 
обучения, могут быть рассмотрены как достаточно 
надежные [9, 12].

ВЫВОДЫ

Точность моделей, предсказывающих газохро-
матографические индексы удерживания, оцени-
вается с помощью метрик, таких как средняя аб-
солютная ошибка, которые, однако, не позволяют 
оценить точность для конкретных молекул. В этой 
работе было показано, что факт наличия в обуча-
ющем наборе молекул, которые близки по структу-
ре к молекуле, индекс удерживания которой пред-
сказывается, очень сильно повышает вероятность 
того, что предсказание для этой молекулы будет 
точным. Наиболее подходящим для этой задачи 
способом оценки молекулярного подобия явля-
ются “молекулярные отпечатки пальцев” ECFP. 
В ситуациях, когда предсказание индексов удер-
живания используется при построении структур 
неизвестных химических соединений, необходимо 
оценивать точность предсказания тем или иным 
способом. Так, например, в одной из работ по из-
учению продуктов трансформации несимметрич-
ного диметилгидразина [9] для большинства рас-
смотренных структур в обучающем наборе данных 
не было молекул с  высокими значениями меры 
молекулярного подобия. А  значит выводы, сде-
ланные с помощью предсказания индексов удер-
живания для этих структур, могут быть не вполне 

надежными. Исходный код сценариев, использо-
ванных для выполнения данной работы, доступен 
онлайн: https://github.com/mtshn/molsimwax

Работа выполнена при поддержке Российского 
Научного Фонда (проект № 22-73-10053), https://
rscf.ru/project/22-73-10053/
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APPLYING MOLECULAR SIMILARITY USED FOR EVALUATING 
THE ACCURACY OF RETENTION INDEX PREDICTIONS IN 

GAS CHROMATOGRAPHY USING DEEP LEARNING
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Abstract. When predicting retention indices using deep learning, there is usually no way to assess the 
reliability of the prediction for a particular molecule. In this work, using stationary phases based on 
polyethylene glycol and the NIST 17 database as an example, it is shown that, on average, the closer the 
molecule in the training data set is to the compound being predicted, the more accurate the prediction. 
Tanimoto similarity of “molecular fingerprints” ECFP is the most appropriate molecular similarity 
calculation algorithm for this problem among the four considered. It is shown that for a number of 
transformation products of unsymmetrical dimethylhydrazine, whose structure was established using 
this prediction, it could be very unreliable.
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