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восстановление пероксидной связи в молекуле мостикового 1,2,4-триоксалана с последующим 
образованием дикетонового фрагмента. При анодном окислении было обнаружено образование 
коллоидных частиц золота.
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Органические пероксиды обладают широким 
спектром биологической активности: фунгицид-
ной [1–4], антигельминтной [5–8], противораковой 
[1, 9–13], противомалярийной [10, 14–16] и анти-
протазойной [5, 11, 17, 18], также данные соедине-
ния до сих пор интересны и в качестве инициаторов 
радикальной полимеризации для промышленных 
процессов [19–21], по этим причинам разработка 
различных методов их синтеза и анализа остаются 
актуальными и на сегодняшний момент [22–25].

Используя методы электрохимического анали-
за, можно определить потенциальную окислитель-
но-восстановительную способность соединений, 
в частности органических пероксидов. Одним из 
наиболее распространенных таких методов явля-
ется метод циклической вольтамперометрии [26–
28]. Причем подобные исследования предприни-
мались, как для установления корреляции между 
биологической активностью и окислительно-вос-
становительной способностью соединений [10, 
29], так и для того, чтобы определить протекающие 
процессы окисления и восстановления пероксидов 
на электродах [28, 30–32], созданных из определен-
ных материалов, в различных органических и во-
дных средах.

В работах [28, 30, 31, 33, 34] исследовали элек-
трохимическое поведение органических перокси-

дов в среде органических растворителей с исполь-
зованием стеклоуглеродного электрода в качестве 
рабочего. Также можно найти некоторое количе-
ство работ, в которых редокс-свойства органиче-
ских пероксидов изучались уже в  водной среде, 
однако в данном случае рабочим электродом вы-
ступали уже золото или платина [32, 35–38]. Таким 
образом, нам представилось крайне интересным 
исследование подобных соединений в неводных 
средах на электродах из благородных металлов.

Этил 2-(4-хлорбензил)-1,5-диметил‑6,7,8-три-
оксабицикло[3.2.1]октан‑2-карбоксилат (3) получа-
ли по методике [3] в две стадии из этилового эфира 
2-(4-хлорбензил)-3-оксобутаноата (1) (схема 1).

Продуктом реакции восстановления 1,2,4-три-
оксолана (озонида) 3 выступал исходный 1,5-ди-
кетон 2, который был выделен в индивидуальном 
виде с использованием колоночной хроматогра-
фии. Соединения 2 и 3 охарактеризованы методом 
ЯМР-спектроскопии.

Спектры ЯМР 1H и 13C регистрировали на при-
боре “Bruker AM‑300”, рабочая частота 300 (1H) 
или 75 (13C) МГц. Внутренний стандарт – CHCl3. 
Химические сдвиги ЯМР 1H приведены относи-
тельно остаточного сигнала растворителя (CDCl3) 
7.27 м. д. для ядер 1H и 77.0 м. д. для ядер13C.

ЭЛЕКТРОХИМИЯ. ГЕНЕРАЦИЯ И АККУМУЛИРОВАНИЕ ЭНЕРГИИ 
ИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ
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Хроматографию продуктов проводили на си-
ликагеле (0.060–0.200  мм, 60°, CAS7631–86–9). 
Дихлорметан, ацетонитрил, петролейный эфир 
(ПЭ). (40:70), этилацетат (ЭА), метилвинилкетон, 
H2O2 (35% водный раствор), MgSO4, NaHCO3, NaI, 
CeCl3 · 7H2O, BF3 · Et2O и Na2S2O3 были приобре-
тены у Acros. Раствор H2O2 в Et2O (6.0 м) получали 
экстракцией Et2O. (5–100 мл) из 35% водного рас-
твора (100 мл) с последующей сушкой над MgSO4 
и удалением части Et2O в вакууме водоструйно-
го насоса при 20–25°C. Этиловый эфир 2-аце-
тил‑2-(4-хлорбензил)-5-оксагексановой кислоты 
(2) получен по методике [3]. Спектральные харак-
теристики соединений 2,3 соответствовали опи-
санным ранее [3].

Этиловый эфир 2-ацетил‑2-(4-хлорбензил)-5-ок-
сагексановой кислоты, 2

Светло-желтое масло. Выход 85%.
Спектр ЯМР 1H (300.13 МГц, δ, м. д., J/Гц, 

CDCl3): 1.26 (т, 3H, J = 7.1 Гц), 2.02–2.36 (м, 8H), 
2.38–2,65 (м, 2H), 3.05–3.23 (дд, 2H, J=14.2 Гц), 
4.13–4.23 (м, 2H), 7.00 (д, 2H, J = 8.2 Гц), 7.22 (д, 
2H, J = 8.2 Гц).

Спектр ЯМР 13С (75.48 МГц, δ, м. д., J/Гц, 
CDCl3): 14.0, 25.6, 27.6, 30.1, 37.7, 38.2, 61.7, 63.9, 
128.6, 129.2, 130.2, 131.3, 171.6, 205.2, 206.8.

Этил 2-(4-хлорбензил)-1,5-диметил‑6,7,8-триок-
сабицикло[3.2.1]октан‑2-карбоксилат, 3

Белые кристаллы. Выход 90%. Rf = 0.46 (TLC, 
PE: EA, 5: 1).

Спектр ЯМР 1H (300.13 МГц, δ, м. д., J/Гц, 
CDCl3): 1.22 (т, J = 7.2 Гц, 2.5H), 1.26 (т, J = 7.2 Гц, 
0.5H), 1.48 (с, 2.5H), 1.55 (с, 0.5H), 1.59–2.11 
(м, 4.2H), 1.66 (с, 0.5H), 1.79 (с, 2.5H), 2.59 (д, J = 
12.9 Гц, 1H), 3.00 (д, J = 12.9 Гц, 0.2H), 3.30 (д, J = 
12.9 Гц, 0.2H), 4.14 (кв, J = 7.2 Гц, 0.4H), 4.19 (кв, 
J = 7.2 Гц, 1.6H), 7.00 (д, J = 8.8 Гц, 1.6H), 7.04 (д, 
J = 8.8 Гц, 0.4H), 7.21 (д, J = 8.8 Гц, 1.6H), 7.22 (д, 
J = 8.8 Гц, 0.4H).

Спектр ЯМР 13С (75.48 МГц, δ, м. д., J/Гц, 
CDCl3): 14.2, 18.7, 19.0, 20.6, 20.8, 21.7, 25.7, 31.1, 

32.8, 36.9, 40.3, 54.1, 54.4, 61.2, 61.4, 109.2, 109.8, 
111.0, 111.2, 128.5, 128.6, 131.3, 131.4, 132.9, 134.6, 
172.3, 172.4.

В настоящей работе 2-(4-хлорбензил)-1,5-диме-
тил‑6,7,8-триоксабицикло[3.2.1]октан‑2-карбокси
лат 3 был исследован на предмет электрохимиче-
ского поведения на золотом электроде в  среде 
ацетонитрила методом ЦВА (циклической воль-
тамперометрии), также был определен продукт 
катодного восстановления на золотом электроде 
и изучена кинетика коррозии золота при анодном 
окислении в присутствии соединения 3.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследование методом ЦВА

Циклические вольтамперограммы регистриро-
вали с помощью потенциостата IPC-Pro MF, кото-
рый управлялся персональным компьютером. Ис-
следования проводили в трехэлектродной ячейке 
при температуре 293 K в области потенциалов E от 
‒2800 до 2300 мВ. Скорость развертки потенциала 
варьировали в диапазоне от 100 до 500 мВ/с. В ка-
честве рабочего электрода использовали золотую 
проволоку диаметром 0.3  мм, впаянную в  стек-
ло и погруженную в раствор электролита на 5 мм, 
вспомогательным электродом служила платино-
вая проволока такого же размера. Для детализа-
ции процессов, протекающих в анодной области, 
использовали золотой дисковой электрод с рабо-
чей площадью 50.26 мм2. Электродом сравнения 
являлся хлорсеребряный электрод с двойной мем-
браной (Ag|AgCl|KCl (3.5 моль л–1)). Перед прове-
дением эксперимента платиновый и золотой элек-
трод травили в царской водке и подвергали катод-
ной поляризации в 0.1 н. растворе серной кислоты 
при j=20.9 мА/см2.

Рабочие растворы готовили с  использовани-
ем предварительно обезвоженного над P2O5 аце-
тонитрила (MeCN). В  качестве фонового элек-
тролита применяли 0.05 М раствор гексафтор-
фосфата тетрабутиламмония (Bu4NPF6, TBAFP) 

Схема 1. Получение исследуемого субстрата 3.
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в ацетонитриле, концентрация исследуемого со-
единения 3 в случае исследования на гладком зо-
лотом электроде в  катодной области составляла 
0.05 М, при проведении сканирования на золотом 
дисковом электроде в анодной области концентра-
ция 1 была равна 0.03 М.

Электролиз с использованием Au в качестве катода

Электролиз проводился в  двухэлектродной 
ячейке без разделения анодного и катодного про-
странств при токе I=1 мА с использованием зо-
лотой проволоки (d = 0.3 мм) в качестве катода 
и платиновой проволокой (d = 0.3 мм) в качестве 
анода в 5 мл раствора соединения 3 (концентра-
ция 0,075 моль л–1) в ацетонитриле, с использо-
ванием для проводимости тетрафторбората тетра-
бутиламмония (Bu4NBF4, TBAFB) концентрацией 
0.05 моль л–1.

Электролиз с использованием Au в качестве анода

Коррозия золотого анода в процессе электро-
лиза изучали в двухэлектродной ячейке без разде-
ления анодного и катодного пространств при токе 
I = 5 мА. В качестве катода использовалась плати-
новая проволока (d = 0.3 мм), золотой анод так-
же представлял собой проволоку (d = 0.3 мм), оба 
электрода были погружены в раствор на 11–12 мм. 
Концентрация используемого соединения 3 в рас-
творе Bu4NPF6 (0.05 М) в ацетонитриле составля-
ла 0.05 М, объем рабочего раствора 5 мл. С целью 
оценки потери (или прироста) массы электродов 
через определенные промежутки времени прово-
дили их взвешивание на электронных аналити-
ческих весах “ABJ220-4NM” (“Kern”, США) (d = 
0.0001 г).

Наличие золотых частиц в растворе определяли 
при помощи рентгено-флуоресцентной спектроме-
трии с градуировкой по методу фундаментальных 
параметров на рентгенофлуоресцентном спектро-
метре ARL PFX‑101 (Thermo ARL, Швейцария).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При погружении золотого электрода в исследуе-
мый раствор устанавливался стационарный потен-
циал 0.4 В относительно хлорсеребряного электро-
да сравнения, далее регистрировали ЦВА раствора 
соединения 3 концентрацией 0.05 М.

На рис. 1 приведены ЦВА, зарегистрированные 
для золотого электрода в растворе 3 в интервале 
потенциалов E от 400 мВ до ‒2800 мВ, при различ-
ных скоростях развертки потенциала ν от 100 до 
500 мВ/с. На ЦВА наблюдаются два необратимых 
пика: первый, неявно выраженный в интервале по-
тенциалов от ‒800 до ‒1150 мВ, и второй, в интер-
вале потенциалов от ‒1500 до ‒2600 мВ.

На рис. 2 изображены линейные зависимости 
Ip,c –ν0.5, проходящие через начала координат или 
близко к  началу координат, что свидетельствует 
о том, что восстановление в обоих катодных про-
цессах в исследуемых интервалах потенциалов ли-
митируется стадией диффузионного подвода суб-
страта к поверхности электрода [39, 40], поэтому 
в данном случае применимо уравнение

	 I S n nFc
FD
RT

vp c,
. .

.
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

0 496 0 5 0 5
0
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где S – площадь поверхности рабочего электро-
да, погруженного в раствор, см2, c0 – концентра-
ция исследуемого вещества в  ячейке, моль/см3, 
F – число Фарадея, Кл/моль, R – универсальная 
газовая постоянная, Дж/к моль, T – значение аб-
солютной температуры при проведении опыта, К, 
D – коэффициент диффузии, см2/c, α – коэффи-
циент переноса электрона, nα – число электронов, 
принимающих участие в  лимитирующей стадии 
переноса заряда, n – суммарное число электронов, 
переносимых диффундирующей частицей. Как 
правило, nα = 1.

Были рассчитаны значения αna для катодных 
процессов. Расчет значений αna проводили по фор-
муле

	 n
RT

F E
1.857

,a
p/2

α =
∆

	 (2)

где R  – универсальная газовая постоянная, 
Дж/к моль, T – значение абсолютной температуры 
при проведении опыта, К, F – число Фарадея, Кл/
моль, Ep/2 – значение потенциала для 0.5Ip,c, В. Для 
каждой скорости развертки потенциала для каж-

Рис. 1. ЦВА 3 в катодной области на Au-электроде, 
ν = 100, 150, 200, 250, 300, 350, 400, 450, 500 мВ/с.
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дого катодного пика, после были найдены средние 
арифметические значения αna.

По расчетам, проведенным на основе получен-
ных данных рис. 2, α1nα = 0.5 для первого катодно-
го пика и α2nα = 0.32 для второго катодного пика. 
Оба этих значения находятся в пределах 0<α<0.5, 
поэтому можно считать, что na = 1.

При регистрации ЦВА на золотом дисковом 
электроде с радиусом 4 мм в интервале потенци-
алов E от 400 до 2300 мВ были получены воспро-
изводимые ЦВА. Анодный пик был зафиксиро-
ван в интервале потенциалов от 1200 до 2300 мВ. 
При увеличении скорости развертки потенциа-
ла значение потенциала максимального значения 
тока смещалось в более анодную область. Также 

наблюдался квазиобратимый пик восстановления 
в катодной ветви развертки ЦВА (рис. 3).

По уравнению (1) были рассчитаны коэффици-
енты диффузии субстрата с учетом уже найденного 
значения коэффициента α. Площадь поверхности S 
составляла 4.78 × 10–6 м2 с учетом того, что диаметр 
рабочего электрода 0.3 мм, а погружение в раствор 
5 мм. Из формулы (1), с учетом наклонов прямых 
рис. 4 были рассчитаны коэффициенты диффузии 
D, при условии, что в каждом из процессов пере-
носится по одному электрону n=1. Наклоны пря-
мых соответственно составляют dI/dn0,5 = –1.33 
× 10–4 Ас1/2/В1/2 для первого катодного пика и dI/
dn0,5 –5.695 × 10–4 Ас1/2/В1/2 для второго катодно-
го пика, а рассчитанные коэффициенты диффузии 
при этом будут равны Dc,1 = 6.85 × 10–8 см2/с, Dc,2 = 
1.95 × 10–6 см2/c.

Стоит отметить разницу между коэффициен-
тами диффузии, которые отличаются друг от дру-
га на полтора порядка, причем, наибольшее зна-
чение D было рассчитано для второго процесса. 
Подобная разница в коэффициентах диффузии 
наблюдалась и при исследовании электрохимиче-
ского поведения 1,2,4,5-тетраоксана в среде аце-
тонитрила [41]. По всей видимости, радикал, об-
разованный в результате первого катодного про-
цесса, является более подвижным, чем исходный 
циклический пероксид, из-за чего и наблюдается 
разница между коэффициентами диффузии Dc,1 
и Dc,2.

Зависимость Ip,a от квадратного корня скорости 
сканирования потенциала ν0.5 является прямой ли-
нией, проходящей через начало координат (рис. 4), 
что свидетельствует о том, что протекание анодно-
го процесса в исследуемом интервале потенциалов 
лимитируется стадией диффузионного подвода 

Рис. 2. Зависимости Ip
c – ν0,5 для первого (а) и второго (б) катодных пиков ЦВА.

Рис. 3. ЦВА 3 в анодной области на Au-электроде, 
ν = 100, 150, 200, 250, 300, 350, 400, 450, 500 мВ/с.



	 ИССЛЕДОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ПОВЕДЕНИЯ� 157

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 99 № 1 2025

субстрата к поверхности электрода. Поэтому в дан-
ном случае применимо уравнение (1), так же, как 
и для процессов, протекающих в катодной области 
ЦВА.

Расчет, проведенный по уравнению (2), с ис-
пользованием данных, полученных по рис. 4, по-
зволил вычислить значение α1nα для анодного про-
цесса. Это значение, равное 0.28, находится в пре-
деле 0<α<0.5, поэтому можно считать, что nα=1.

По уравнению (1) рассчитали коэффициент 
диффузии субстрата D с учетом площади поверхно-
сти S, равной 4.94 × 10–5 м2 для дискового Au-элек-
трода, и наклона прямой (данные рис. 4), состав-
ляющей dI/dn0,5 = 8.29 × 10–4 Ас1/2/В1/2. Величина 
коэффициента диффузии для анодного процесса 
Dа = 1.25 × 10–7 см2/с.

С целью изучения продуктов окисления про-
веден гравиметрический эксперимент, где в каче-
стве анода использовался гладкий золотой элект-
род, а в качестве катода – платиновый (рис. 5). За 
все время эксперимента масса платинового катода 

увеличилась на 0.5 мг, при этом масса растворен-
ного с анода золота составила 6.5 мг. При проведе-
нии электролиза с платиновым катодом наблюда-
ется линейная зависимость растворения золота от 
времени эксперимента.

Нами предложен следующий механизм анодно-
го процесса коррозии золотого электрода (Схе-
ма 2):

При проведении электролиза с использовани-
ем золотого электрода в качестве катода с I = 1 
мА, было зафиксировано образование 1,5-дике-
тона 2, который являлся исходным соединени-
ем для синтеза мостикового 1,2,4 – триоксалана 
3 (Схема 3). Стоит отметить, что выход продук-
та 2 за 45 часов электролиза составил 39%. При 
попытке проведения реакции при более высоких 
значениях тока (I = 5 мА, I = 10 мА) продукт 2 
был обнаружен только в следовых количествах по 
данным ЯМР-спектроскопии. По-видимому, со-
единение 2 не образуется при более высоких зна-
чениях тока.

Рис. 4. Зависимость Ip,a от ν0,5. Рис. 5. Изменение массы золотого анода, при I = 
5 мА, в растворе MeCN, концентрация соединения 
3 составляла 0.05 M.

Схема 2. Электрохимическая коррозия золота в присутствии соединения 3 в среде ацетонитрила.
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ЗАКЛЮЧЕНИЕ

При изучении электрохимического поведения 
гладкого золотого электрода в растворе мости-
кового 1,2,4-триоксалана в ацетонитриле, было 
установлено, что в катодной области протекает 
восстановление пероксидной связи с  перено-
сом двух электронов с последующим разрывом 
цикла в соединении 3, вследствие чего образует-
ся 1,5-дикетонный фрагмент. Гравиметрическим 
методом показано, что в анодном пространстве 
происходит коррозия золотого электрода с об-
разованием наночастиц золота, причем перенос 
золотых частиц на катод практически не наблю-
дается.
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BRIDGED 1,2,4-TRIOXALANE IN ACETONITRILE

M. V. Polyakova, *, M. D. Vedenyapinaa, A. M. Skundinb, I. A. Yaryomenkoa, and P. S. Radulova

aN. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Moscow, 119991 Russia



160	 ПОЛЯКОВ  и др.

	 ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 99 № 1 2025

bA. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences,  
Moscow, 119071 Russia

Abstract. The behavior of a smooth gold electrode in the medium of bridged 1,2,4-trioxalane in 
acetonitrile is studied by cyclic voltammetry and gravimetry methods. It is found that during the cathodic 
process, the reduction of the peroxide bond in the bridged 1,2,4-trioxalane molecule takes place at the 
electrode surface followed by the formation of a diketone moiety. During anodic oxidation, the formation 
of colloidal gold particles is detected.
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